簡易檢索 / 詳目顯示

研究生: 張志遠
Chih-Yuan Chang
論文名稱: 模型預測控制於雙行程致動器系統之伺服控制研究
Servo Design of a Dual-Stage Actuator Based on Model Predictive Control
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃安橋
An-Chyau Huang
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 132
中文關鍵詞: 雙行程致動系統同步性效能指標模型預測控制反覆控制
外文關鍵詞: Dual stage actuator system, Synchronization performance index, Model predictive control, Repetitive control.
相關次數: 點閱:333下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要探討模型預測控制(Model Predictive Control, MPC)於雙行程致動器系統之伺服設計方法與應用。由於MPC可將限制條件納入,並針對多輸入多輸出系統求解其最佳控制變化量,而這些良好的特點正好符合雙行程系統伺服控制設計需求,所以近年來有許多文獻將此控制方法應用於雙行程致動器系統。為了在追跡控制的過程中有效率調節主致動器與次致動器的工作量,使其達到高速、高精密追跡效能,本研究提出一新型成本函數,在最佳化的過程中同時考量主致動器與參考輸入之間的誤差權重及總行程的誤差權重,藉此提高雙行程系統追跡控制效能。為了減輕MPC求解時的龐大運算量本研究依線性系統理論提出一較保守的輸出限制方法以便系統實現。由點對點定位實驗結果證實能有效達到良好的追跡控制效能,所提之輸出限制方法亦能有效克服飽和與運算量的問題。除此之外,本研究針對精密加工實際應用設計一複合週期參考輸入進行深入探討,並採用能處理多週期信號的反覆模型預測控制器來提升誤差收斂速度與改善週期性追跡誤差。實驗結果顯示所提出之MPC設計可大幅提升追跡控制效能,當週期性運動伴隨著輸出干擾時,以MPC進行限制條件處理確可有效降低週期性干擾的影響。為了方便討論本文亦提出一個簡易同步性效能量化評估方式,證實所提控制器確能達到良好的追跡效能。


This thesis discusses the servo design of a dual stage actuator (DSA) based on model predictive control (MPC). Because MPC is a MIMO optimal control method which can considers the influences of the system constraints in the controller design process, recently many researchers have applied this advanced control technique to dual stage actuator system (DSA) servo design for better control performance. To ef-ficiently manage the control action of the primary actuator and the secondary actuator for achieving high speed and high precision tracking, this study proposes a new per-formance index function in the MPC design. The idea is to include the tracking error of the primary actuator into the optimization process besides the DSA tracking error. To reduce the computational burden caused by the conventional hard constraints, this study also proposes a conservative output constraint condition on the secondary actu-ator for implementation. Point-to-point tracking control experimental results demon-strate that adding the proposed performance index and constraint condition has sub-stantially improved the tracking performance and alleviated the saturation issues. In addition, this study has applied a complex reference profile to further evaluate the practicability of the MPC for DSA servo design. A repetitive model predictive control is proposed to handle the multi-period tracking errors. Experimental results show that the proposed MPC design significantly improves the control performance even subject to output disturbances. Finally, a quantitative assessment method is presented for the synchronization performance of DSA systems.

目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XI 符號表 XII 第一章 緒論 1.1 前言與研究動機 1 1.2 文獻回顧 2 1.3 本文貢獻與架構 9 第二章 雙行程系統模型推導與系統架設 2.1 雙行程系統模型推導 10 2.2 系統架設 11 2.2.1 雙行程系統伺服平台架設 11 2.2.2 馬達與驅動器 12 2.2.3 壓電放大/感測器與壓電致動器 13 2.2.4 實驗硬體 14 第三章 控制理論 3.1 模型預測控制基本概念 15 3.1.1 輸入限制 18 3.1.2 輸出限制 19 3.2 模型預測控制器設計 22 3.3 結合狀態觀測之模型預測控制器設計 27 3.4 結合反覆控制之模型預測控制器設計 28 第四章 實驗結果與討論 4.1 系統識別與模型驗證 35 4.1.1 馬達模型驗證 35 4.1.2 壓電系統模型驗證 38 4.2 實驗規劃 41 4.3 實驗一: S-Curve追跡實驗結果 42 4.3.1 S-Curve運動曲線介紹 42 4.3.2 基於成本函數Ja之模型預測控制 44 4.3.3 基於成本函數Jb之模型預測控制 51 4.3.4 比較成本函數Ja、Jb之同步性效能 55 4.3.5 比較成本函數Ja、Jb加入限制條件之同步性效能 61 4.4 實驗二: 複合頻率追跡實驗結果 65 4.4.1 複合頻率運動曲線介紹 65 4.4.2 基於成本函數Ja、Jb之模型預測控制 69 4.4.3 基於成本函數Ja、Jb之反覆模型預測控制 79 4.4.4 比較RMPC(Jb)與SDM之同步性效能 90 4.4.5 加入限制條件探討 95 第五章 結論與未來研究方向 5.1 結論 105 5.2 未來研究方向與建議 106 參考文獻

參考文獻
[1] M. Kobayashi and R. Horowitz, “Track seek control for hard disk dual-stage servo systems,” IEEE Transactions on Magnetics, Vol. 37, No. 2, pp. 949-954, 2001.
[2] Y. Li and R. Horowitz, “Design and testing of tracking following controllers for dual stage servo systems with PZT actuated suspensions,” Microsystem Tech-nologies, Vol. 8, pp. 194-205, 2002.
[3] U. Boettcher, R. A. de Callafon and F.E. Talke, “Modeling and control of a dual stage actuator hard disk drive,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.4, No.1, pp. 107-118, 2010.
[4] C. W. Lee and S. M. Suh, “Model prediction based dual-stage actuator control in discrete-time domain,” IEEE Transactions on Magnetics, Vol. 47, No. 7, pp. 1830-1836, 2011
[5] T. Gao, C. Du, C. P. Tan, Z. He, J. Yang and L. Xie, “High bandwidth control design and implementation for a dual-stage actuation system with a microthermal actuator,” IEEE Transactions on Magnetics, Vol. 49, No. 3, pp. 1082-1087, 2013.
[6] J. Zheng, A. Salton and M. Fu, “Design and control of a rotary dual-stage actua-tor positioning system,” Mechatronics, Vol. 21, No. 6, pp. 1003-1012, 2011.
[7] 周伯謙, “前饋式零相位誤差強健控制器應用於微型化藍光讀寫頭兩段式致動器設計,” 國立交通大學機械工程研究所碩士論文, 2008.
[8] 張銘祥, “具機器視覺之二階段伺服控制微奈米精密定位平台系統研究,” 國立高雄第一科技大學機械與自動化工程所研究所碩士論文, 2003.
[9] K. Krishnamoorthy, C. Y. Lin and T. C. Tsao, “Design and control of a dual stage fast tool servo for precision machining,” IEEE International Conference on Control Applications, Vol. 1, Sept 2004, pp. 742-747,.
[10] B. S. Kim, J. Li, and T. C. Tsao, “Two parameter robust repetitive control with application to a novel dual-stage actuator for noncircular machining,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No.4, pp. 644-652, 2004.
[11] M. D. Kim, K. H. Lee, K. T. Nam and S. M. Lee, “Design and control of a sin-gle-stage dual-actuator system for high–precision manufacturing,” Microsystem Technologies, Vol. 20, No. 2, pp. 175-183, 2014.
[12] D. Tong, S. C. Veldhuis and M. A. Elbestawi, “Control of a dual stage magneto-strictive actuator and linear motor feed drive system,” International Journal of Advanced Manufacturing Technology, Vol. 33, No. 3-4, pp. 379-388, 2007.
[13] M R. Aravind Raghavendra and A. Senthil Kumar, “Single axis error compensa-tion of ultra precision lathe using dual servo actuation,” International Journal of Applied Science and Technology, Vol. 6, No. 2, pp. 9-16, 2013.
[14] 朱昱儒, “整合外差式光柵干涉儀於精密定位平台之單軸直線度誤差補償,” 國立台灣科技大學機械工程研究所碩士論文, 2014.
[15] S. Kwon, W. K. Chung, and Y. Youm, “On the coarse/fine dual-stage manipula-tors with robust perturbation compensator,” IEEE International Conference on Robotics & Automation, Vol. 1, 2001, pp. 121-126,
[16] S. Kokuryu, M. Izutsu, N. Kamamichi and J. Ishikawa, “Wide-bandwidth bilat-eral control using two stage actuator systems: evaluation results of a prototype,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept 2011, pp. 2151-2157.
[17] D. Kim, K. T. Nam, S. H. Ji and S. M. Lee, “Modeling of a dual actuator system and its control algorithm preventing saturation of fine actuator,” IEEE/ASME In-ternational Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, July 3-7 2011, pp. 530-535.

[18] 莊庭凱, “適應頻率塑型LQ控制器設計與實作,” 國立台灣科技大學機械工程研究所碩士論文, 2014.
[19] Y. C. Chang and T .C. Tsao, “Feedforward model predictive control for du-al-stage fast tool servo with realistic constraints,” ASME Conference on Annual Dynamic System and Control joint with the JSME Conference on Motion and Vi-bration, Vol. 2, Fort Landerdale, Florida, USA, Oct 17-19 2012, pp. 293-301.
[20] J. Zheng, “Model predictive control of a dual-stage actuator system for fast set-point tracking,” IEEE Conference on Industrial Electronics and Applications, Melbourne, VIC, June 19-21 2013, pp.1604-1609.
[21] K. Mori, T. Munemoto, H. Otsuki, Y. Yamaguchi and K. Akagi, “A dual-stage magnetic disk drive actuator using a piezoelectric device for a high track density,” IEEE Transactions on Mechatronics, Vol. 27, No. 6, pp. 5298-5300, 1991.
[22] H. Numasato and M. Tomizuka, “Settling control and performance of a du-al-actuator system for hard disk drives,” IEEE/ASME Transactions on Mecha-tronics, Vol. 8, No. 4, pp. 1083-4435, 2003.
[23] G. Herrmann, M. C. Turner, I. Postlethwaite and G. Guo, “Practical implementa-tion of a novel anti-winup scheme in a HDD-dual-satge servo-system,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 3, pp. 580-592, 2004.
[24] T. Shen and M. Fu, “High precision feedback control design for dual-actuator systems,” Proceeding of IEEE Conference on Control Application, Toronto, Canada, Aug 28-31 2005, pp. 956-961.
[25] R. Oboe, A. Beghi and B. Murari, “Modeling and control of a dual stage actuator hard disk drive with piezoelectric secondary actuator,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, Sept 19-23 1999, pp. 138-143.
[26] J. Zheng and M. Fu, “Nonlinear feedback control of a dual-stage actuator system for reduced settling time,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 4, pp.717-725, 2008.
[27] M. Bai, D. H. Zhou and H. Schwarz, “Adaptive augmented state feedback con-trol for an experimental planar two-link flexible manipulator,” IEEE Transactions on Robotics and Automation, Vol. 14, No. 6, pp. 940-950, 1998.
[28] R. Nagamune, X. Huang and R. Horowitz, “Robust H2 synthesis for dual-stage multi-sensing track-following servo systems in HDDs,” American Control Con-ference, Minnesota, USA, June 14-16 2006, pp. 1284-1289.
[29] H. D. Taghirad and P. Sheykholeslami, “Adaptive robust controller design for a dual-stage hard disk drive,” IEEE/ASME international conference on Advanced intelligent mechatronics, Zurich, Sept 4-7 2007, pp.1-6.
[30] S. Cheng and P. C. Chou, “Adaptive ZPETC method for dual-stage actuator con-troller design in miniaturized optical disc drive,” IEEE International Mixed-Signals, Sensors, and Systems Test Workshop, Vancouver, BC, June 18-20 2008, pp. 1-6.
[31] M. H. Chiang, “Development of XY servo pneumatic-piezoelectric hybrid actu-ators for position control with high response, large stroke and nanometer accura-cy,” Sensor, Vol.10, No. 4, pp. 2675-2693, 2010.
[32] M.D. A. Recker, P. V. Kokotovic and J. Winkelman, “Adaptive nonlinear control of systems containing a deadzone ,” Proceeding of IEEE Conference on Decision and Control, Brighton, England, Dec 1991, pp. 2111-2115.
[33] J. W. Eaton and J. B. Rawings, “Model-predictive control of chemical processes,” Chemical Engineering Science, Vol. 47, No. 4, pp. 705-720, 1992.
[34] J. A. De Dona, G. C. Goodwin and M. M. Seron, “Anti-windup and model pre-dictive control: reflections and connections,” European Journal of Control , Vol. 6, No. 5, pp. 467-477, 2000.
[35] I. Propoi, “Application of linear programming methods for the synthesis of au-tomatic sampled-data systems,” Avtomat. i Telemekh, Vol. 24, No. 7, pp. 912-920, 1963.
[36] V. Neelakantan, G. N. Washington and N. K. Bucknor, “Model predictive control of a two stage actuation system using piezoelectric actuators for controllable in-dustrial and automotive brakes and clutches,” Journal of Intelligent Material Systems and Structures, Vol. 19, No. 7, pp. 845-857, 2008.
[37] D. S. Carrasco and G. C. Goodwin, “Feedforward model predictive control,” Annual Reviews in Control, Vol. 35, No. 2, pp. 199-206, 2011.
[38] S. Haghighat, S. Di Cairano, D. Konobrytskyi and S. Bortoff, “Coordinated Control of a Dual-Stage Positioning System Using Constrained Model Predictive Control,” ASME Conference on Dynamics Systems and Control, Vol. 1, San An-tonio, Texas, USA, Oct 22-24 2014.
[39] M. A. Rahman, A. AI Mamun, K. Yao, and Y, Daud, “Discrete-time model pre-dictive control for head-positioning servomechanism in a dual-stage hard disk drive,” IEEE International Conference on Mechatronics and Automation, Tianjin, Aug 3-6 2014, pp.8-13.
[40] R. Fletcher, Practical methods of optimization, Hoboken, New Jersey: John Wiley, 1987.
[41] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics, 1994.
[42] Roos, T. Terlaky, and J. P. Vial, Theory and algorithms for linear optimization: an interior point approach, Hoboken, New Jersey: John Wiley, 1997.
[43] S. J. Wright, Primal-dual interior-point methods, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics, 1997.
[44] Hildreth, “A quadratic programming procedure,” Naval Research Logistics Quarterly, Vol. 4, No. 1, pp. 79-85, 1957.
[45] L. Wang, Model predictive control system design and implementation using MATLAB, London, United Kingdom: Springer-Verlag, 2009.
[46] J. M. Maciejowski. Predictive control with constraints, Prentice-Hall, 2002.
[47] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic systems, Boston, Massachusetts: Addison-Wesley, 1994.
[48] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions ASME, Journal of Basic Engineering, Vol. 82, pp. 35-45, 1960.
[49] M. Tomizuka, T. C. Tsao, and K. K. Chew, “Analysis and synthesis of dis-crete-time repetitive controllers,” Journal of Dynamic Systems Measurement, and Control, Vol. 111, pp. 353-358, 1989.
[50] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” Journal of Dynamics Systems, Measurement and Control, Vol. 109, No. 1, pp. 65-68, 1987.
[51] C. Y. Liu and C. Y. Lin, “Model predictive control with integral control and con-straint handling for mechatronic systems,” International Conference on Modelling, Identification and Control, Okayama, Japan, July 17-19 2010, pp. 424-429.
[52] M. F. Heertjes and R. M. van de Molengraft, “Set-point variation inlearning schemes with applications to wafer scanners,” Control Engineering Practice, Vol. 17, No. 3, pp. 345-356, 2009.
[53] N. Sarkar, R. E. Ellis and T. N. Moore, “Backlash detection in geared mecha-nisms: modeling, simulation, and experimentation,” Mechanical systems and signal processing, Vol. 11, No. 3, pp. 391-408, 1997.
[54] R. Kalantan and M. S. Foomani, “Backlash nonlinearity modeling and adaptive controller design for an electromechanical power transmission system,” Trans. B: Mechnical Engineering, Vol. 16, No. 2, pp. 463-469, 2009.

QR CODE