簡易檢索 / 詳目顯示

研究生: 吳宇森
Yu-Sen Wu
論文名稱: 類石墨型氮化碳薄膜之雙極式電阻式記憶體
Bipolar Switching Resistive Memory Based on Graphitic Carbon Nitride Films
指導教授: 周賢鎧
Shyan-kay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 125
中文關鍵詞: 電阻式記憶體(RRAM)石墨型氮化碳(g-C3N4)銦錫氧化物(ITO)氧化亞銅(Cu2O)
外文關鍵詞: Resistance random-access memory (RRAM), Graphitic carbon nitride (g-C3N4), Indium tin oxide (ITO), Copper(I) oxide (Cu2O)
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以類石墨型氮化碳(Graphitic carbon nitride, g-C3N4)薄膜為基礎,應用於電阻式記憶體(Resistive Random Access Memory, RRAM)之介電層,製備出Cu/g-C3N4/ITO結構之元件。
經由電性量測可表現出雙極式電阻之切換特性,且可穩定循環掃描達1000次,RHRS/RLRS約1.6倍。分析其傳導機制,可發現LRS屬於Ohmic conduction,HRS在低電壓部分屬於Ohmic conduction,而高電壓部分屬於Schottky emission傳導。
後續以PMMA旋塗在有無摻雜氧化亞銅(Copper(I) oxide, Cu2O)之介電層上,形成Cu/PMMA/g-C3N4/ITO和Cu/PMMA/g-C3N4+Cu2O/ITO結構之元件,Cu/PMMA/g-C3N4/ITO經過22次循環掃描,RHRS/RLRS約20倍,分析其傳導機制,LRS屬於Ohmic conduction,HRS在低電壓部分屬於Ohmic conduction,而高電壓部分屬於Schottky emission傳導;而Cu/PMMA/g-C3N4+Cu2O/ITO經過27次循環掃描,表現出良好的RHRS/RLRS比高達103倍,分析其傳導機制,LRS屬於Ohmic conduction,HRS則屬於空間電荷限制傳導(SCLC)機制。


This study is based on Graphitic Carbon Nitride (g-C3N4) film, applied to the dielectric layer of Resistive Random Access Memory (RRAM), and Indium tin oxide (ITO) glass is used as the substrate to prepare Cu/g-C3N4/ITO device.
Through electrical measurement, it can show the switching characteristics of bipolar resistance, and can stably cycle scan up to 1000 times, RHRS/RLRS is about 1.6 times. Analyzing its conduction mechanism, it can be found that LRS belongs to Ohmic conduction, HRS belongs to Ohmic conduction in the low voltage part, and the high voltage part belongs to Schottky emission conduction.
Subsequently, spin-coated PMMA on the dielectric layer to prepare Cu/PMMA/ g-C3N4/ITO and Cu/PMMA/g-C3N4+Cu2O/ITO devices, Cu/PMMA/g-C3N4/ITO passes through 22 cycles of scanning, RHRS/RLRS is about 20 times, analysis of its conduction mechanism, LRS belongs to Ohmic conduction, HRS belongs to Ohmic conduction in the low voltage part, and the high voltage part belongs to Schottky emission conduction.Cu/PMMA/g-C3N4+Cu2O/ITO showed a good RHRS/RLRS ratio of 103 times after 27 cycles of scanning, analysis of its conduction mechanism shows that LRS belongs to Ohmic conduction and HRS belongs to space charge limited conduction (SCLC) mechanism.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 第一章、 前言 1 1.1緒論 1 1.2研究動機 2 第二章、 文獻回顧 3 2.1記憶體簡介 3 2.1.1鐵電式記憶體 3 2.1.2磁阻式記憶體 4 2.1.3相變化式記憶體 4 2.1.4電阻式記憶體 4 2.2電阻轉換機構 6 2.2.1 導電燈絲機構 7 2.2.2 界面型導電機構 8 2.2.3 離子遷徙機構 9 2.3漏電流導電機制 9 2.3.1歐姆接觸 10 2.3.2蕭特基發射 11 2.3.3傅勒-諾德翰穿隧 12 2.3.4普爾-法蘭克發射 12 2.3.5空間電荷限制傳導 13 2.4典型電阻式記憶體之研究 15 2.5 g-C3N4之電阻切換相關研究 20 2.6g-C3N4之材料結構性質 22 2.7g-C3N4摻雜Cu2O之材料結構性質 26 第三章、 實驗儀器與實驗方法 30 3.1 實驗材料與藥品規格 30 3.2 實驗設備與分析儀器 31 3.3 實驗原理 32 3.3.1 石英管爐(Quartz Furnace) 32 3.3.2磁控式濺鍍系統(Magnetron Sputtering system) 33 3.3.3微波電漿系統(Microwave Plasma) 34 3.3.4場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 35 3.3.5 X光繞射儀(X-ray Diffractometer, XRD) 36 3.3.6 X光光電子能譜儀(X-ray Photoelectron Spectrum, XPS) 36 3.3.7紫外光-可見光光譜儀(UV–visible Spectroscope) 37 3.3.8傅立葉轉紅外光譜儀(Fourier-Transform Infrared Spectroscope) 39 3.3.9螢光光譜儀(Spectrofluorometer) 39 3.4 實驗步驟 40 3.4.1 實驗流程與分析 40 3.4.2 基板清洗 41 3.4.3 g-C3N4薄膜製備 42 3.4.4 g-C3N4電阻式記憶體元件製備 43 第四章、 結果與討論 45 4.1 g-C3N4之結構與性質探討 45 4.1.1 g-C3N4 XRD結構分析 46 4.1.2 g-C3N4薄膜FE-SEM分析 47 4.1.3 g-C3N4FTIR分析 49 4.1.4 g-C3N4薄膜UV- vis能隙分析 51 4.1.5 g-C3N4薄膜PL光致發光分析 52 4.1.6g-C3N4XPS元素分析 53 4.1.7 Cu/g-C3N4/ITO元件FE-TEM分析 57 4.2 Cu/g-C3N4/ITO元件電性分析 58 4.2.1 Cu(100 mesh)/g-C3N4/ITO元件I-V量測 59 4.2.2Cu (100 mesh)/g-C3N4/ITO元件電阻切換機制分析 60 4.2.3 Cu(200 mesh)/g-C3N4/ITO元件I-V量測 61 4.2.4 Cu (200 mesh)/g-C3N4/ITO元件電阻切換機制分析 63 4.3 g-C3N4摻雜Cu2O之結構與性質探討 65 4.3.1 g-C3N4摻雜Cu2OXRD結構分析 66 4.3.2 g-C3N4摻雜Cu2O薄膜FE-SEM分析 68 4.3.3 g-C3N4摻雜Cu2OFTIR分析 69 4.3.4 g-C3N4摻雜Cu2OUV- vis能隙分析 71 4.3.5 g-C3N4摻雜Cu2OPL光致發光分析 73 4.3.6 g-C3N4摻雜Cu2O XPS元素分析 73 4.3.7 Cu/g-C3N4+Cu2O/ITO元件FE-TEM分析 76 4.4 Cu/g-C3N4+Cu2O/ITO元件電性分析 77 4.4.1 Cu (100 mesh)/g-C3N4+Cu2O/ITO元件I-V量測 77 4.4.2 Cu (100 mesh)/g-C3N4+Cu2O/ITO元件電阻切換機制分析 79 4.4.3 Cu (200 mesh)/g-C3N4+Cu2O/ITO元件I-V量測 80 4.4.4 Cu (200 mesh)/g-C3N4+Cu2O/ITO元件電阻切換機制分析 82 4.5塗佈PMMA於g-C3N4及g-C3N4+Cu2O介電層之元件 84 4.5.1 Cu/PMMA/g-C3N4/ITO元件FE-SEM分析 84 4.5.2 Cu/PMMA/g-C3N4+Cu2O/ITO元件FE-SEM分析 85 4.5.3 Cu/PMMA/g-C3N4+Cu2O/ITO元件FE-TEM分析 86 4.6塗佈PMMA於g-C3N4及g-C3N4+Cu2O介電層之電性分析 86 4.6.1 Cu (100 mesh)/PMMA/g-C3N4/ITO元件I-V量測 87 4.6.2 Cu(100 mesh)/PMMA/g-C3N4/ITO元件電阻切換機制分析 88 4.6.3 Cu(100 mesh)/PMMA/g-C3N4+Cu2O/ITO元件I-V量測 89 4.6.4 Cu(100 mesh)/PMMA/g-C3N4+Cu2O/ITO元件電阻切換機制分析 91 第五章、 結論 94 第六章、 未來展望 95 第七章、 參考文獻 96 附錄 103

[1] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor
found, Nature 453 (2008) 80-83.

[2] J. J. Yang, D. B. Strukov, D. R. Stewart, Memristive devices for computing, Nat.
Nanotechnol. 8 (2013) 13-24.

[3] S.-T. Han, Y. Zhou, V. A. L. Roy, Towards the development of flexiblenon-volatile
memories, Adv. Mater.25 (2013) 5425-5449.

[4] S. Carrara, D. Sacchetto, M.-A. Doucey, C. Baj-Rossi, G. De Micheli, Y.
Leblebici, Memristive-biosensors: A new detection method by using
Nanofabricated memristors, Sens. Actuators B: Chem. 171-172 (2012) 449-457.

[5] M. Doucey, S. Carrara, Nanowire sensors in cancer, Trends Biotechnol. 37 (2019)
86-99.

[6] M. VidiŠ, T. Plecenik, M. MoŠko, S. TomaŠec, T. Roch, L. Satrapinskyy, B.
Grancic, A. Plecenik, Gasistor: A memristor based gas triggered switch and gas
sensor with memory, Appl. Phys. Lett. 115 (2019) 093504 (5 pp).

[7] P. Kumar, S. Maikap, S. Ginnaram, J.-T. Qiu, D. Jana, S. Chakrabarti, S. Samamta,
K. Singh, A. Roy, S. Jana, M. Dutta, Y.-L. Chang, H.-M. Cheng, R. Mahapatra,
H.-C. Chiu, J.-R. Yang, Cross-point resistive switching memory and urea sensing
by using annealed GdOx film in IrOx/GdOx/W structure for biomedical
applications, J. Electrochem. Soc. 164 (2017) B127-B135.

[8] A.V. Pawar, S.S. Knapally, K.D. Kadam, S.L. Patil, V.S. Dongle, S.A. Jadhav, S.
Kim, T.D. Donagle, MemSens: A new detection method for heavy metals based on
silver nanoparticles assisted memristive switching principle, J. Mater. Sci.: Mater.
Electron. 30 (2019) 11383-11394.

[9] S. Roy, A. Roy, R. Panja, S. Samanta, S. Charkrabrti, P.-L. Yu, S. Maikap, H.-M.
Cheng, L.-T. Tsai, J.-T. Qiu, Comparison of resistive switching characteristics by

using e-gun/sputter deposited SiOx film in W/SiOx/TiN structure and pH/creatinine sensing through iridium electrode, J. Alloys Compd. 726 (2017) 30-40.

[10] C. Wen, J. Hong, S. Yao, T. Niu, Y. Ju, A novel exposure sensor based on reverse series memristor, Sen. Actuators A: Phys. 278 (2018) 25-32.

[11] S. Nau, C. Wolf, S. Sax, E.J.W. List-Kratochvil, Non-volatile resistive photo-switches for flexible image detector arrays, Proc. SPIE 9569 (2015) 956908 (12 pp).

[12] L. Bao, J. Kang, Y. Fang, Z. Yu, Z, Wang, Y. Yang, Y. Cai, R. Huang, Artificial shape perception retina network based on tunable memristive neurons, Sci. Rep. 8 (2018) 13727 (9 pp).

[13] S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible memory system based on an UV-motivatedmemristor, Adv. Mater. 30 (2018) 1705400 (9 pp).

[14] M.J. Rozenberg, I.H. Inoue, M.J. Sánchez, Nonvolatile memory with multilevel switching: A basic model, Phys. Rev. Lett. 92 (2004) 178302 (4 pp).

[15] S. Balatti, S. Larentis, D.C. Gilmer, D. Ielmini, Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament, Adv. Mater. 25 (2013) 1474-1478.

[16] T.J. Raeber, A.J. Barlow, Z.C. Zhao, D.R. McKenzie, J.G. Partridge, D.G. McCulloch, B.J. Murdoch, Sensory gating in bilayer amorphous carbon memristors, Nanoscale 10 (2018) 20272-20278.

[17] F. Zhou, J. Chen, X. Tao, X. Wang, Y. Chai, 2D materials based optoelectronic memory: Convergence of electronic memory and optical sensor, Res. 2019 (2019) 9490413 (17 pp).

[18] S.Y. Cai, C.-Y. Tzou, Y.-R. Liou, D.-R. Chen, C.-Y. Jiang, J.-M. Ma, C.-Y. Chang, C.-Y. Tseng, Y.-M. Liao, Y.-P. Hsieh, M. Hofmann, Y.-F. Chen, Hybrid optical/electrical memristor for light-based logicand communication, ACS Appl. Mater. Interfaces 11 (2019) 4649-4653.

[19] F. Zhou, Y. Liu, X. Shen, M. Wang, F. Yuan, Y. Chai, Low-voltage, optoelectronic CH3NH3PbI3-xClxmemory with integrated sensing and logic operations, Adv. Funct. Mater. 28 (2018) 1800080 (8 pp).

[20] M. Guo, J. Jiang, J. Qian, C. Liu, J. Ma, C.‐W. Nan, Y. Shen, Flexible Robust and
High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self-Assembly, Adv. Sci. 6 (2019) 1801931.

[21] C.-H. Chiu, C.-W. Huang, Y.-H. Hsieh, J.-Y. Chen, C.-F. Chang, Y.-H. Chu, W.-W. Wu, In-situ TEM observation of Multilevel Storage Behavior in low power
FeRAM device, Nano Energy 34 (2017) 103-110.

[22] N. Perrissin, S. Lequeux, N. Strelkov, A. Chavent, L. Vila, L. D. B.-Prejbeanu, S.
Auffret, R. C. Sousa, I. L. Prejbeanu, B. Dieny, A highly thermally stable sub-20
nm magnetic random-access memory based on perpendicular shape anisotropy,
Nanoscale 10 (2018) 12187-12195.

[23] J. M. I.-Harms, G. Jan, H. Liu, S. S.-Guisan, J. Zhu, L. Thomas, R.-Y. Tong, V.
Sundar, P.-K. Wang, High-temperature thermal stability driven by magnetization
dilution in CoFeB free layers for spin-transfer-torque magnetic random access
memory,Sci. Rep. 8 (2018) 14409.

[24] L. Wang, L. Tu, J. Wen, Application of phase-change materials in memory taxonomy,Sci. Technol. Adv. Mater. 18 (2017) 406-429.

[25] A.-K. U. Michel, M. Sousa, M. Yarema, O. Yarema, V. Ovuka, N. Lassaline, V.
Wood, D. J. Norris, Optical Properties of Amorphous and Crystalline GeTe
Nanoparticle Thin Films: A Phase-Change Material for Tunable Photonics, ACS
Appl. Nano Mater. 3 (2020) 4314–4320.

[26] A. Sawa, Resistive switching in transition metal oxides, Mater. Today 11 (2008)
28-36.

[27] P.-M. Mickel, A.-J. Lohn, M.-J. Marinella, Memristive switching: Physical
mechanisms and applications, Mod. Phys. Lett. B 28 (2014) 1430003 (25 pp).

[28] R. Waser, R. Dittmann, G.Staikov, K. Szot, Redox-based resistive switching
memories–nanoionics mechanisms, prospects, and challenge, Adv. Mater. 21 (2009) 2632-2663.

[29] B. L. Sharma, Metal-semiconductor Schottky Barrier Junctions and Their Applications, Plenum Press, New York (1984).

[30] S.-O. Kasap, Principles of Electronic Materials and Devices, Third Edition, Mc Graw Hill (2006) 443-447.

[31] J.-C. Ranuarez, M.-J. Deen, C.-H. Chen, A review of gate tunneling current inMOS devices, Microelectron Reliab 46 (2006) 1939-1956.

[32] F.-C. Chiu, A review on conduction mechanisms in dielectric Films, Adv. Mater. Sci. Eng.2014 (2014) 1-18.

[33] C.-J. Li, S. Jou,W.-L. Chen, Effect of Pt and Al Electrodes on Resistive Switching Properties of Sputter-Deposited Cu-Doped SiO2 Film, J. Appl. Phys. 50 (2011) 01BG08.

[34] S. Jou, C.-L. Chao, Resistance Switching of Copper-Doped Tantalum Oxide Prepared by Oxidation of Copper-Doped Tantalum Nitride, Surf. Coat. Technol. 231 (2013) 311-315.

[35] P.-J. Yang, S. Jou, C.-C. Chiu, Bipolar resistive switching in transparent AZO/SiOx/ITO devices, Jpn. J. Appl. Phys. 53 (2014) 075801.

[36] K.-J. Gan, P.-T. Liu, S.-J. Lin, D.-B. Ruan, T.-C. Chien, Y.-C. Chiu, S. M. Sze, Bipolar resistive switching characteristics of tungsten-doped indium–zinc oxide conductive-bridging random access memory, Vacuum 166 (2019) 226-230.

[37] M. N. Almadhoun, M. N. Hedhili, I. N. Odeh, P. Xavier, U. S. Bhansali, H. N. Alshareef, Bipolar Resistive Switchingin Junctions of Gallium Oxide and p type Silicon, : Nano Lett. 21 (2021) 2666-2674.

[38] C.-C. Hsu, H. Chuang, W.-C. Jhang, Annealing effect on forming-free bipolar resistive switching characteristics of sol-gel WOx resistive memories with Al conductive bridges,J. Alloys Compd. 882 (2021) 160758.

[39] W. Wang, B. Zhang, H. Zhao, Forming-free bipolar and unipolar resistive switching behaviors with low operating voltage in Ag/Ti/CeO2/Pt devices, Results Phys.16 (2020) 103001.

[40] S. P. Park, Y. J. Tak, H. J. Kim, J. H. Lee, H. Yoo, H. J. Kim, Analysis of the Bipolar Resistive Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory, Adv. Mater. 30 (2018) 1800722.

[41] F. Zhao, H. Cheng, Y. Hue, L. Song, Z. Zhang, L. Jiang, L. Qu, Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing, Sci. Rep. 4 (2014) 5882 (7 pp).

[42] X. Wang, B. Sun, X. Li, B. Guo, Y. Zeng, S. Mao, S. Zhu, Y. Xia, S. Tian, W.
Luo, Influence of the voltage window on resistive switching memory
characteristics based on g-C3N4 devices, Ceram. Int. 44 (2018) 18108-18112.

[43] R. Wang, H. Lin, L. Zhang, Y.-J. Zeng, Z. Lv, J.-Q. Yang, J.-Y. Mao, Z. Wang, Y.
Zhou, S.-T. Han, Graphitc carbon nitride nanosheets for solution processed non-
volatile memory devices, J. Mater. Chem.C 7 (2019) 10203-10210.

[44] V.K. Perla, S.K. Ghosh, P. Kumar, S.C. Ray, K. Mallick, Carbon nitride
supported silver nanoparticles: A potential system for non-volatile memory
application with high ON-OFF ratio, J. Mater. Sci.: Mater. Electron. 30 (2019)
8399-8406.

[45] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci. 391 (2017) 72-123.

[46] J. Gao, Y. Zhou, Z. Li, S. Yan, N. Wang, Z. Zou, High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity, Nanoscale 4 (2012) 3687–3692.

[47] N. Chidhambaram, K. Ravichandran, Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications, Mater. Lett.207 (2017) 44–48.

[48] N. A. Mohamed, J. Safaei, A. F. Ismail, M. Firdaus, M. Noh, N. A. Arzaee, N. N. Mansor, M. A. Ibrahim, N. A. Ludin, J. S. Sagu, M. A. M. Teridi, Fabrication of exfoliated graphitic carbon nitride, g-C3N4 thin film by methanolic dispersion, J. Alloys Compd. 818 (2020) 152916.

[49] F. Jia, Y. Zhang, W. Hu, M. Lv, C. Jia, J. Liu, In-situ Construction of Superhydrophilic g-C3N4 Film by Vapor-Assisted Confined Deposition for Photocatalysis, Front. Mater. 6 (2019) 52.

[50] X. Ma, J. Zhang, B.Wang, Q. Li, S. Chu, Hierarchical Cu2O foam/g-C3N4 photocathode for photoelectrochemical hydrogen production, Appl. Surf. Sci. 427 (2018)907–916.

[51] S.Anandan, J. J. Wu, D. Bahnemann, A. Emeline, M. Ashokkumar,Crumpled Cu2O-g-C3N4nanosheets for hydrogen evolution catalysis, Colloids Surf. A 527 (2017) 34-41.

[52] D. O’Connor, B. Sexton, R. Smart, Surface Analysis Methods in Materials Science, Springer, 2nd Edition, USA (2003).

[53] 吳泰伯、許樹恩,「X光繞射原理與材料結構分析」,中國材料科學學會,
台灣,民國95年。

[54] B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, Prentice Hall, U.S.A, (2001).

[55] E. K. Grasse, M. H. Torcasio, A. W. Smith, Teaching UV−Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer, J. Chem. Educ.93 (2016) 146-151.

[56] S. Martha, A. Nashim, K. M. Parida, Facile synthesis of highly active g-C3N4 for
Efficient hydrogen production under visible light, J. Mater. Chem. A1 (2013)
7816- 7824.

[57] M. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, M. A. Rahman, Fourier Transform Infrared (FTIR) Spectroscopy, Membrane Characterization (2017) 3-29.

[58] N. A. Mohamed, J. Safaei, A. F. Ismail, M. F. A. M. Jailani, M. N. Khalid, M. F.
M. Noh, A. Aadenan, S. N. S. Nasir, J. S. Sagu, M. A. M. Teridi, The influences
of post-annealing temperatures on fabrication graphitic carbon nitride, (g-C3N4)
thin film, Appl. Surf. Sci. 489 (2019) 92-100.

[59] N. Chidhambaram, K. Ravichandran, Single step transformation of urea into
metal-free g-C3N4nanoflakes for visible light photocatalytic applications, Mater.
Lett. 207 (2017) 44-48.

[60] J. Bian, Q. Li, C. Huang, J. Li, Y. Guo, M. Zaw, R.-Q. Zhang, Thermal vapor
condensation of uniform graphitic carbon nitride films with remarkable
photocurrent density for photoelectrochemical applications, Nano energy 15
(2015) 353-361.

[61] N. Urakami, M. Kosaka, Y. Hashimoto, Thermal chemical vapor deposition and
luminescence property of graphitic carbon nitride film for carbon-based
semiconductor systems, Jpn. J. Appl. Phys. 58 (2019) 010907 (4 pp).

[62] L. Ye, S. Chen, Fabrication and high visible-light-driven photocurrent response
of g-C3N4 film: The role of thiourea, Appl. Surf. Sci. 289 (2016) 1076-1083.

[63] J. Wang, D.R. Miller, E.G. Gillan, Photoluminescence carbon nitride films grown
by vapor transport of carbon nitride powders, Chem. Commun. 19 (2002) 2258-
2259.

[64] X. Lv, M. Cao, W. Shi, M. Wang, Y. Shen, A new strategy of preparing uniform
graphitic carbon nitride films for photoelectrochemical application, Carbon 117
(2017) 343-350.

[65] I. Tanaka, T. Nishimiya, G. Ohgita, Y. Harada, Preparation of carbon nitride films from g-C3N4 by ion-beam-assisted deposition, Mech. Eng. J. 6 (2019) 18-00547 (9 pp).

無法下載圖示 全文公開日期 2024/10/28 (校內網路)
全文公開日期 2024/10/28 (校外網路)
全文公開日期 2024/10/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE