簡易檢索 / 詳目顯示

研究生: 黃欣萍
Hsin-Ping Huang
論文名稱: 界面氧化鈦對Ti/ITO及ITO/Ti元件之雙極式電阻切換影響
Effect of Interfacial Oxide layer (TiOx) on Bipolar Resistive Switching of Ti/ITO and ITO/Ti Devices
指導教授: 周賢鎧
Shyankay Jou
口試委員: 蔡豐羽
Feng-Yu Tsai
王秋燕
Chiu-Yen Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 142
中文關鍵詞: 電阻式記憶體(RRAM)TiITO雙層薄膜TiOx界面電阻層
外文關鍵詞: Resistance Random Acess memory (RRAM), titanium (Ti), bilayers and interfacial-oxide layer TiOx
相關次數: 點閱:258下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Ti及ITO作為電阻式記憶體之電極,並藉由Ti金屬之高氧化勢而自身氧化成TiOx電阻層,因此可在無需額外濺鍍電阻層下製成Ti/ITO與ITO/Ti之電阻式記憶體。
    TiN/Ti/TiOx/ITO元件為雙極式電阻式記憶體,且無需以高電壓forming;其掃描方向為逆時針方向,分別在正向偏壓1.16 V處切換(Set)為低電阻態,在負向偏壓-1.00 V處切換回(Reset)高電阻態;且元件來回穩定掃描可達500次,其高低電阻比值可達8倍。其中,在TiN/Ti/TiOx/ITO元件導電機制部分可發現,當元件掃描至穩定後,其低電阻態之導電機制為Ohmic conduction,高電阻態在低電壓符合Ohmic law而高電壓則為Poole-Frenkle emission。接著,利用電極面積之影響可發現,TiN/Ti/TiOx/ITO元件在高電阻態時,其電阻值隨面積增大而變小,而低電阻態不隨電極面積改變,由此可推測元件藉由燈絲路徑作為導電方式;另外,在溫度效應方面則可以發現在高低電阻態時,其電阻值皆會隨溫度上升而下降,因此可推測TiN/Ti/TiOx/ITO元件導電方式以氧空缺作為導電燈絲路徑。
    最後,本實驗另製作ITO/TiOx/Ti/TiN元件,此元件也屬於雙極式電阻式記憶體,而掃描方向則為順時針方向,分別在正向偏壓2.0 V處切換(Reset)為高電阻態,在負向偏壓-1.4 V處切換回(Set)低電阻態。且發現ITO/TiOx/Ti/TiN元件在多次掃描後高低電阻比值僅達1.5倍且較為不穩定。而導電機制在低電阻態時為Ohmic conduction,高電阻態為空間電荷限制傳導(Space-charge-limited conduction)。因此為改善元掃描之穩定性及高低電阻比值,本實驗將ITO/TiOx/Ti/TiN元件在250℃下進行真空退火30分鐘,確實有效改善元件切換之穩定性。


    In this study, we used titanium (Ti) and indium tin oxide (ITO) as the eletrodes to fabricate the TiN/Ti/TiOx/ITO and ITO/TiOx/Ti/TiN resistance random acess memory (RRAM) without depositing a resistor layer. It was found that an interfacial-oxide layer TiOx was spontaneously formed between Ti and ITO layers.
    The TiN/Ti/TiOx/ITO device showed bipolar switching of resistance in counterclockwise direction without forming a process. The TiN/Ti/TiOx/ITO device changed from high resistive state (HRS) to low resistive state (LRS) at about 1.16 V and changed back to HRS at about -1.00 V. The endurance test showed resistance ratio, RHRS/RLRS, for TiN/Ti/TiOx/ITO device was 8, and the DC voltage sweeps could achieve about 500 cycles at room temperature. The conducting mechanism for TiN/Ti/TiOx/ITO device followed Ohmic cconduction at LRS. And the HRS also followed Ohmic cconduction at low voltage, but Poole-Frenkel emission at high voltage. Furthermore, the area-dependence characteristic of resistance for the TiN/Ti/TiOx/ITO device was constant at LRS, but decreased with increased areas at HRS. And the characteristic of resistance was increased with temperatures for the TiN/Ti/TiOx/ITO device at LRS and HRS. Filamentary path of oxygen vacancies was suggested to dominate the conduction in the TiN/Ti/TiOx/ITO device.
    The ITO/TiOx/Ti/TiN device also showed bipolar switching of resistance but in clockwise direction without a forming process. And the ITO/TiOx/Ti/TiN device could be reset from LRS to HRS at about 2.0 V and set back to LRS at about -1.4 V. Furthermore, the resistance ratio, RHRS/RLRS, was around 1.5 and unstable for the ITO/TiOx/Ti/TiN device. After switching stably, the conducting mechanism of ITO/TiOx/Ti/TiN device followed Ohmic cconduction at LRS, but combined Ohmic at low voltages and space-charge-limited conduction at high voltages at HRS. By annealing it in vacuum at 250 ℃ for 30 min, the ITO/TiOx/Ti/TiN device had stable switching behavior.

    摘要 ...............................................................................................................................I Abstract ........................................................................................................................ II 誌謝..............................................................................................................................IV 目錄 ............................................................................................................................VI 圖目錄 .........................................................................................................................X 表目錄 .....................................................................................................................XVI 第 一 章 前言............................................................................................................1 1.1 前言........................................................................................................................1 第 二 章 文獻回顧....................................................................................................2 2.1 記憶體簡介............................................................................................................2 2.1.1 鐵電式記憶體(Ferroelectric Random Access Memory, FeRAM)................2 2.1.2 相變化式記憶體(Phase-Change Random Access Memory, PRAM)...........2 2.1.3 磁阻式記憶體(Magnetoresistive Random Access Memory, MRAM).........3 2.1.4 電阻式記憶體(Resistive Random Access Memory, RRAM).......................3 2.1.4.1 單極式電阻切換...............................................................................4 2.1.4.2 雙極式電阻切換...............................................................................5 1.2 電阻式記憶體之電阻切換機構...........................................................................6 2.2.1 導電燈絲機構(Filamentary conducting path) .............................................6 2.2.2 離子遷徙機構(Ionic migration) ..................................................................8 2.2.3 界面型導電機構(Interface-type conducting path) ......................................9 2.3 漏電流導電機制..................................................................................................11 2.3.1 歐姆接觸(Ohmic contact)...........................................................................11 2.3.2 蕭特基發射(Schottky emission).................................................................12 2.3.3 傅勒-諾德翰穿隧(Fowler-Nordheim tunneling, FNT) ..............................13 2.3.4 普爾-法蘭克發射(Poole-Frenkel emission) ...............................................15 2.3.5 空間電荷限制傳導(Space-charge-limited conduction) .............................17 2.4 TiOx 之電阻切換相關研究................................................................................19 2.4.1 TiOx 薄膜作為電阻層之基本性質...........................................................19 2.4.2 TiOx 作為電阻層之研究...........................................................................23 2.5 研究動機..............................................................................................................33 第 三 章 實驗方法與步驟......................................................................................34 3.1 電阻式記憶體實驗流程與製備..........................................................................34 3.1.1 實驗耗材與藥品規格.................................................................................34 3.1.2 實驗流程.....................................................................................................35 3.1.2.1 基材清洗..........................................................................................37 3.1.2.2 元件製備..........................................................................................37 3.2 實驗儀器與裝置..................................................................................................39 3.2.1 實驗儀器簡表.............................................................................................39 3.2.2 磁控式濺鍍系統(Magnetic Sputtering) .....................................................39 3.2.3 場發射雙束型聚焦離子束顯微鏡(Dual Beam FIB). ...............................41 3.2.4 石英管爐.....................................................................................................42 3.3 實驗材料分析儀器..............................................................................................43 3.3.1 材料分析儀器簡表.....................................................................................43 3.3.2 電化學.........................................................................................................44 3.3.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) ......................................................................................................44 3.3.4 高解析度場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscopy, FETEM)....................................................................45 3.3.5 X-ray 繞射分析儀(X-ray Diffractometer, XRD).......................................46 3.3.6 X 射線光電子能譜儀(X-ray Photoelectron Spectrum, XPS)...................47 3.3.7 紫外光可見光光譜儀(UV/VIS Spectrophotometer)..................................49 3.3.8 橢圓偏光儀(Ellipsometer)..........................................................................49 3.3.9 半導體電性量測儀(Agilent B1500A)........................................................50 第 四 章 結果與討論..............................................................................................52 4.1 TiN/Ti/TiOx/ITO元件材料特性與電性分析......................................................52 4.1.1 TiN/Ti/TiOx/ITO元件之材料成分特性分析..............................................52 4.1.1.1 TiN/Ti/TiOx/ITO元件之XRD分析...................................................52 4.1.1.2 TiN/Ti/TiOx/ITO元件高解析薄膜微觀結構分析............................54 4.1.1.3 TiN/Ti/TiOx/ITO元件縱深分析........................................................56 4.1.2 TiN/Ti/TiOx/ITO元件電性分析..................................................................71 4.1.2.1 TiN/Ti/TiOx/ITO元件I-V曲線分析..................................................71 4.1.2.2 TiN/Ti/TiOx/ITO元件電阻切換機制分析........................................73 4.1.2.3 TiN/Ti/TiOx/ITO元件電阻切換機構探討........................................77 4.2 ITO/TiOx/Ti/TiN元件材料特性與電性分析......................................................79 4.2.1 ITO/TiOx/Ti/TiN元件之材料成分特性分析.............................................79 4.2.1.1 ITO/TiOx/Ti/TiN元件之XRD分析.................................................79 4.2.1.2 ITO/TiOx/Ti/TiN元件高解析薄膜微觀結構分析............................81 4.2.1.3 ITO/TiOx/Ti/TiN元件縱深分析........................................................83 4.2.1.4 ITO電極電阻係數分析...................................................................95 4.2.2 ITO/TiOx/Ti/TiN元件電性分析.................................................................97 4.2.2.1 ITO/TiOx/Ti/TiN元件I-V曲線分析................................................97 4.2.2.2 ITO/TiOx/Ti/TiN元件電阻切換機制分析........................................99 4.2.2.3 ITO/TiOx/Ti/TiN元件電阻切換機構探討......................................102 4.2.3 ITO/TiOx/Ti/TiN元件退火處理之材料特性與電性分析.......................104 4.2.3.1 ITO/TiOx/Ti/TiN退火元件高解析薄膜微觀結構分析..................104 4.2.3.2 ITO/TiOx/Ti/TiN退火元件縱深分析..............................................105 4.2.3.3 ITO/TiOx/Ti/TiN退火元件I-V曲線分析......................................116 4.2.3.4 ITO/TiOx/Ti/TiN退火元件電阻切換機構探討..............................118 4.3 TiN/Ti/TiOx/ITO元件與ITO/TiOx/Ti/TiN元件之比較...................................120 第 五 章 結論........................................................................................................122 第 六 章 未來展望................................................................................................124 參考文獻....................................................................................................................125 附錄............................................................................................................................133 JCPD cards-TiN...............................................................................................133 JCPD cards-Ti..................................................................................................134 JCPD cards-ITO..............................................................................................135 Spectroscopy of XPS-C...................................................................................136 Spectroscopy of XPS-O...................................................................................137 Spectroscopy of XPS-Ti..................................................................................138 Spectroscopy of XPS-N...................................................................................139 Spectroscopy of XPS-In..................................................................................140 Spectroscopy of XPS-Sn.................................................................................141 Spectroscopy of XPS-Si..................................................................................142

    [1]C.-H. Lai, C.-H Chen, T.-Y Tseng, "Resistive switching behavior of sol–gel deposited TiO2 thin films under different heating ambience", Surface & Coatings Technology 231, 399-402, 2012.
    [2]N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, B. Yu, "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories", Applied Physics Letters 92, 232112, 2008.
    [3]P. Calka, E. Martinez, D. Lafond, H. Dansas, S. Tirano, V. Jousseaume, "Resistance switching in HfO2-based OxRRAM devices", Microelectronic Engineering 88, 1140-1142, 2011.
    [4]J.-B. Yang, T.-C. Chang, J.-J. Huang, Y.-T. Chen, P.-C. Yang, H.-C. Tseng, A.-K. Chu, S.-M. Sze, M.-J. Tsai, "Role of InGaOx resistive switching characteristics on the performances of resistance random access memory of Pt/IGO/TiN device", Thin Solid Films 528, 26-30, 2012.
    [5]C.-H. Cheng, P.-C. Chen, S.-L. Liu, T.-L. Wu, H.-H. Hsu, A. Chin, F.-S. Yeh, "Bipolar switching characteristics of low-power GeO resistive memory", Solid-State Electronics 62, 90-93, 2011.
    [6]S. Murali, J.-S. Rajachidambaram, S.-Y. Han, C.-H. Chang, G.- S. Herman, J.-F. Conley Jr, "Resistive switching in zinc-tin-oxide", Solid-State Electronics 79, 248-252, 2013.
    [7]K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, C.-W. Cheng, "The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device", Microelectronics Reliability 50, 670-673, 2010.
    [8]K.-H. Chen, R. Zhang, T.-C. Chang, T.-M. Tsai, K.-C. Chang, "Hopping conduction distance dependent activation energy characteristics of Zn:SiO2 resistance random access memory devices", Applied Physics Letters 102, 133503, 2013.
    [9]C.-H. Cheng, P.-C. Chen, Y.-H. Wu, M.-J. Wu, F.-S. Yeh, A. Chin, "Highly uniform low-power resistive memory using nitrogen-doped tantalum pentaxide", Solid-State Electronics 73, 60-63, 2012.
    [10]H. Ishiwara, "Impurity substitution effects in BiFeO3 thin films-From a viewpoint of FeRAM applications", Current Applied Physics 12, 603-611, 2012.
    [11]N. Settera, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, S. Streiffer, "Ferroelectric thin films: Review of materials, properties, and applications", Journal of Applied Physics 100, 051606, 2006.
    [12]G. A. Gibson, A. Chaiken, T. Hurst, "Phase-change Data Storage:Recording Technologies", Encyclopedia of Materials: Science and Technology, 0-08-043152-6, 1-4, 2007.
    [13]R. C. Sousa, I. L. Prejbeanu, "Non-volatile magnetic random access memories (MRAM)", Comptes Rendus Physique 6, 1013–1021, 2005.
    [14]A. Sawa, "Resistive switching in transition metal oxides", Materials Today 11, 28-36, 2008.
    [15]J. Shin, G. Choi, J. Woo, J. Park, S. Park, W. Lee, S. Kim, M. Son, H. Hwang, "MIM-type cell selector for high-density and low-power cross-point memory application", Microelectronic Engineering 93, 81-84, 2012.
    [16]F. Pan, C. Chen, Z.-S. Wang, Y.-C. Yang, J. Yang, F. Zeng, "Nonvolatile resistive switching memories-characteristics, mechanisms and challenges", Progress in Natural Science: Materials International 20, 01-15, 2010.
    [17]Y.-S. Chen, P.-S. Chen, H.-Y. Lee, T.-Y. Wua, K.-H. Tsai, F. Chen, M.-J. Tsai, "Enhanced endurance reliability and low current operation for AlOx/HfOx based unipolar RRAM with Ni electrode", Solid-State Electronics 94, 1-5, 2014.
    [18]L. Goux, R. Degraeve, J. Meersschaut, B. Govoreanu, D. J. Wouters, "Role of the anode material in the unipolar switching of TiN\NiO\Ni cells", Journal of Applied Physics 113, 054505, 2013.
    [19]C.-Y. Liu, Y.-R. Shih, S.-J. Huang, "Unipolar resistive switching in a transparent ITO/SiOx/ITO sandwich fabricated at room temperature", Solid State Communications 159, 13-17, 2013.
    [20]B. Gao, L. Liu, X. Liu, J. Kang, "Resistive switching characteristics in HfOx layer by using current sweep mode", Microelectronic Engineering 94, 14-17, 2012.
    [21]Z.-W. Zheng, C.-H. Cheng, K.-I. Chou, M. Liu, A. Chin, "Improved current distribution in resistive memory on flexible substrate using nitrogen-rich TaN electrode", Applied Physics Letters 101, 243507, 2012.
    [22]C.-H. Hsu, Y.-S. Fan, P.-T. Liu, "Multilevel resistive switching memory with amorphous InGaZnO-based thin film", Applied Physics Letters 102, 062905, 2013.
    [23]J. Park, S. Jung, J. Lee, W. Lee, S. Kim, J. Shin, H. Hwang, "Resistive switching characteristics of ultra-thin TiOx", Microelectronic Engineering 88, 1136-1139, 2011.
    [24]A. Markeev, A. Chouprik, K. Egorov, Y. Lebedinskii, A. Zenkevich, O. Orlov, "Multilevel resistive switching in ternary HfxAl1-xOy oxide with graded Al depth profile", Microelectronic Engineering 109, 342–345, 2013.
    [25]S. Larentis, C. Cagli, F. Nardi, D. Ielmini, "Filament diffusion model for simulating reset and retention processes in RRAM", Microelectronic Engineering 88, 1119-1123, 2011.
    [26]H. Akinaga, H. Shima, "Resistive random access memory (ReRAM) based on metal oxides", Proceedings of the IEEE 98, 2237-2251, 2010.
    [27]T.-M. Pan, C.-H. Lu, "Structural properties and electroforming-free resistive switching characteristics of GdOx, TbOx, and HoOx memory devices", Materials Chemistry and Physics 139, 437-442, 2013.
    [28]C.-W. Zhong, W.-H. Tzeng, K.-C. Liu, H.-C. Lin, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, P.-S. Chen, H.-Y. Lee, F. Chen, M.-J. Tsai, "Effect of ITO electrode with different oxygen contents on the electrical characteristics of HfOx RRAM devices", Surface & Coatings Technology 231, 563-566, 2013.
    [29]N. Raghavan, K.- L. Pey, W. Liu, X. Wu, X. Li, M. Bosman, "Evidence for compliance controlled oxygen vacancy and metal filament based resistive switching mechanisms in RRAM", Microelectronic Engineering 88, 1124-1128, 2011.
    [30]G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film", Applied Physics Letters 91, 222103, 2007.
    [31]R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges", Advanced Materials 21, 2632-2663, 2009.
    [32]Y.-Y. Chen, G. Pourtois, C. Adelmann, L. Goux, B. Govoreanu, "Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device", Applied Physics Letters 100, 113513, 2012.
    [33]J.-S. Huang, L.-M. Chen, T.-Y. Lin, C.-Y. Lee, T.-S. Chin, "Nonpolar electrical switching behavior in Cu–Si(Cu)Ox–Pt stacks", Thin Solid Films 544, 134-138, 2013.
    [34]A. Prakash, S. Maikap, C.S. Lai, T.C. Tien, W.S. Chen, H.Y. Lee, F.T. Chen, M.-J. Kao, M.-J. Tsai, "Bipolar resistive switching memory using bilayer TaOx/WOx films", Solid-State Electronics 77, 35-40, 2012.
    [35]Q. Zhou, J. Zhai, "The improved resistive switching properties of TaOx-based RRAM devices by using WNx as bottom electrode", Physica B 410, 85-89, 2013.
    [36]S. O. Kasap, Principles of Electronic Materials and Devices, Third Edition, Mc Graw Hill, 443-447, 2006.
    [37]B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Plenum Press, New York, 1984.
    [38]K. Roy, S. Mukhopadhyay, M.-M. Hamid, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits" , Proceedings of the IEEE 91, 305-327, 2003.
    [39]M. Lenzlinger ,E. H. Snow, "Fowler Nordheim tunneling into thermally grown SiO2", Journal of Applied Physics 40, 278-283, 1969.
    [40]W.R. Harrell, J. Frey, "Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films", Thin Solid Films 352, 195-204, 1999.
    [41]S. Yu, X. Guan, H.-S. Philip Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trapassisted-tunneling model", Applied Physics Letters 99, 063507, 2011.
    [42]Qi. Liu, W. Guan, S. Long, R. Jia, M. Liu, "Resistive switching memory effect of ZrO2 films with Zr+ implanted", Applied Physics Letters 92, 012117, 2008.
    [43]黎佳惠,「界面氧化鋁對Al/TaOxNy/TaN及TaN/TaOxNy/Al元件之雙極式電阻切換影響」,國立台灣科技大學材料科學與工程所碩士學位論文,民國102年。
    [44]楊秉融,「摻鋁氧化鋅對透明AZO/SiOx/ITO元件之電阻切換影響」,國立台灣科技大學材料科學與工程所碩士學位論文,民國102年。
    [45]U, Diebold, "The surface science of titanium dioxide", Surface Science Reports 48, 53-229, 2003.
    [46]J. J. Yang, J. P. Strachan, F. Miao, M.-X. Zhang, M. D. Pickett, W. Yi, D. A.A. Ohlberg, G. Medeiros-Ribeiro, R. Stanley Williams, "Metal/TiO2 interfaces for memristive switches", Journal of Physics A: Applied Physics 102, 785-789, 2011.
    [47]D. Acharyya, A. Hazra, P. Bhattacharyya, "A journey towards reliability improvement of TiO2 based Resistive Random Access Memory: A review", Microelectronics Reliability 54, 541–560, 2014.
    [48]D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory", Nature Nanotechnology 5, 148-153, 2010.
    [49]A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, C. G. Van de Walle, "Hybrid functional studies of the oxygen vacancy in TiO2", Physical Review B 81, 085212, 2010.
    [50]Y. C. Bae , A. R. Lee, J. S. Kwak, H. Im, J. P. Hong, "Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2-x/Pt matrix", Current Applied Physics 11, 66-69, 2011.
    [51]D. Acharyya, A. Hazra, K. Dutta, R. K. Gupta, P. Bhattacharyya, "Highly repeatable multilevel resistive switching characteristics of an Au/TiO2/Ti memory device", Semiconductor Science and Technology 28, 125001, 2013.
    [52]J. Robertson, "High dielectric constant oxides", The European Journal of Applied Physics 28, 265-291, 2004.
    [53]K. P. Biju, X.-J. Liu, E. M. Bourim, I. Kim, S. Jung, M. Siddik, J. Lee, H. Hwang, "Asymmetric bipolar resistive switching in solution-processed Pt/TiO2/W devices", Journal of Physics D: Applied Physics 43, 495104, 2010.
    [54]W.-G. Kim, S.-W. Rhee, "Effect of post annealing on the resistive switching of TiO2 thin film", Microelectronic Engineering 86, 2153-2156, 2009.
    [55]Y.-S. Fan, P.-T. Liu, C.-H. Hsu, "Investigation on amorphous InGaZnO based resistive switching memory with low-power, high-speed, high reliability", Thin Solid Films 549, 54-58, 2013.
    [56]C. A. Volkert, A. M. Minor, “Focused ion beam microscopy and micromachining”, MRS Bulletin 32, 389-399, 2007.
    [57]D. J. O’Connor, B. A. Sexton, R. St. C. Smart (Eds), Surface Analysis Methods in Materials Science, 2nd Edition, Springer, U.S.A, 2003.
    [58]B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, Prentice Hall, U.S.A, 2001.
    [59]John C. Vickerman, Ian S. Gilmore, Surface Analysis –The Principal Techniques, 2nd Edition, John Wiley and Sons, UK, 2009.
    [60]R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light, North-Holland, U.S.A, 2003.
    [61]J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Minnesota, U.S.A, 1995.
    [62]N. Arshi, J. Lu, B. H. Koo, C. G. Lee, F. Ahmed, "Effect of nitrogen flow rate on the properties of TiN film deposited by e beam evaporation technique", Applied Surface Science 258, 8498-8505, 2012.
    [63]A. Vesel, M. Mozetic, J. Kovac, A. Zalar, "XPS study of the deposited Ti layer in a magnetron-type sputter ion pump", Applied Surface Science 253, 2941-2946, 2006.
    [64]H.D. Wu, W. Huang, W.F. Lu, R.F. Tang, C. Li, H.K. Lai, S.Y. Chen, C.L. Xue, " Ohmic contact to n-type Ge with compositional Ti nitride", Applied Surface Science 284, 877-880, 2013.
    [65]K.-R. Wu, C.-H. Ting, W.-C. Liu, C.-H. Lin, J.-K. Wu, "Successive deposition of layered titanium oxide/indium tin oxide films on unheated substrates by twin direct current magnetron sputtering", Thin Solid Films 500, 110-116, 2006.
    [66]C. Tang, L. Feller, P. Rossbach, B. Keller, J. Vo ̈ro ̈s, S. Tosatti, M. Textor, "Adsorption and electrically stimulated desorption of the triblock copolymer poly (propylene sulfide- bl -ethylene glycol) (PPS–PEG) from indium tin oxide (ITO) surfaces", Surface Science 600, 1510-1517, 2006.
    [67]N. Moria, S. Ooki, N. Masubuchi, A. Tanaka, M. Kogoma, T. Ito, "Effects of postannealing in ozone environment on opto-electrical properties of Sn-doped In2O3 thin films", Thin Solid Films 411, 6-11, 2002.
    [68]Q. Wang, G. Williams, H. Aziz, " Photo-degradation of the indium tin oxide (ITO)/organic interface in organic optoelectronic devices and a new outlook on the role of ITO surface treatments and interfacial layers in improving device stability", Organic Electronics 13, 2075-2082, 2012.
    [69]T. Homola, J. Matous ̌ek, V. Medvecka ́, A. Zahoranova ́, M. Kormunda, D. Kova ́c ̌ik, M. C ̌erna ́k, "Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning", Applied Surface Science 258, 7135-7139, 2012.
    [70]P. Babelon, A.S. Dequiedt, H. Moste ́fa-Sba, S. Bourgeois, P. Sibillot, M. Sacilotti, "SEM and XPS studies of titanium dioxide thin films grown by MOCVD", Thin Solid Films 322, 63–67, 1998.
    [71]S.-H. Paeng, M.-W. Park, Y.-M. Sung, "Transparent conductive characteristics of Ti:ITO films deposited by RF magnetron sputtering at low substrate temperature", Surface & Coatings Technology 205, S210-S215, 2010.

    QR CODE