簡易檢索 / 詳目顯示

研究生: 黃松建
Sung-Chien Huang
論文名稱: 氣相合成一維氮化鎵奈米結構之研究
Growth of one dimensional GaN nanostructure by using chemical vapor deposition
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 蔡大翔
Dah-Shyang Tsai
林麗瓊
Li-Chyong Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 氮化鎵一維結構有機金屬化學氣相沈積
外文關鍵詞: gallium nitride(GaN), one dimensional structure, metalorganic chemical vapor deposition(MOCVD)
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用有機金屬化學氣相沈積方式,以三甲基鎵(TMGa)及氨氣(NH3)為原料,分別使用鍍上金觸媒的Si(111)、Ge奈米線及ZnO奈米柱為基材來沈積氮化鎵。在鍍上1 nm厚度金觸媒於Si(111)上藉由調整適當的沈積條件可成長出具奈米結構的GaN沈積物。其中反應溫度在800℃時的沈積呈現片狀的奈米結構;550℃則呈現柱狀的奈米結構。又進料Ⅴ/Ⅲ增加至約15000,可成長出較筆直的氮化鎵奈米柱(高度約為300 nm,底部直徑約為100 nm)。在既成的奈米結構物如Ge奈米線上沈積出珍珠串的氮化鎵奈米點結構(直徑約為100~150 nm)。當以原子層磊晶方法於Ge奈米線及ZnO奈米柱上沈積氮化鎵時,沈積形態呈現包覆式的核殼結構。最後在SiO2包覆的ZnO奈米柱上已具方向性的Ar+離子蝕刻奈米柱上部表面後的選擇性CVD沈積實驗,發現過高的反應溫度(850℃)及高濃度的NH3可能會破壞ZnO奈米柱結構,使得選擇性成長在此條件下失效。


Gallium nitride(GaN) nanostructure were grown by metalorganic chemical vapor deposition using trimethylgallium(TMGa) as source material for Ga, and Ge nanowire、ZnO nanorod、Si(111) with 1 nm of Au as substrates. Si(111) coated with 1 nm Au was acted as a substrate. Heating the substrate until its temperature was 800℃ would form a sheet-like nanostructures. In the other hand, heating the substrates until its temperature was 550℃ would form a rod-like nanostructures. Well-aligned GaN nanorod structure were formed by increasing the feed ratio of Ⅴ/Ⅲ to 15000. GaN nanodots were formed on Ge nanowire substrate. Core-shell structure of GaN/ZnO nanorod、GaN/Ge nanowire were formed by atomic layer epitaxy(ALE) technique. The selective growth process of GaN nanorod on ZnO nanorod, which was coated with SiO2 and acted as substrate, was failed due to high temperature(850℃) and high NH3 concentration.

中文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅰ 英文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅱ 誌謝∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅲ 目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅳ 圖索引∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅶ 表索引∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ⅩⅡ 第一章 緒論 1.1 氮化鎵(GaN)的發展與應用∙∙∙∙∙∙∙∙∙∙∙∙∙ 1 1.2 一維奈米材料∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3 1.3 研究動機與目的∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 第二章 實驗相關部分 2.1 實驗氣體及藥品∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 2.2 實驗設備及分析儀器 2.2-1 實驗設備及方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 2.2-2覆罩層上成長窗口的製作∙∙∙∙∙∙∙∙∙∙∙∙26 2.2-3分析儀器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙29 第三章 結果討論 3.1 於覆罩層上成長窗口內沈積氮化鎵奈米結構∙∙∙∙∙∙33 3.2 使用金為觸媒的氮化鎵奈米柱成長∙∙∙∙∙∙∙∙∙∙36 3.2-1 金觸媒厚度的選擇∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙36 3.2-2 進料為漏斗形導流管時,降低原料TMGa的濃度對 氮化鎵沈積的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙40 3.2-3 進料口距離基材表面4 cm的沈積∙∙∙∙∙∙∙∙∙43 3.2-4 進料口距離基材表面0.8 cm的沈積∙∙∙∙∙∙∙∙∙47 3.2-5 進料口距離基材表面0.8 cm,改變基材溫度對氮化鎵 的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51 3.2-6 進料口距離基材表面0.8 cm的情況下,固定反應溫度 在550 ℃,增加Ⅴ/Ⅲ比對於沈積氮化鎵的影響∙∙∙∙55 3.2-7在相同Ⅴ/Ⅲ比下,改變進料口與基材表面的距離 對於沈積氮化鎵的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙59 3.2-8 進料口距離基材表面8公分的情況下,增加反應時間 對於沈積氮化鎵的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙64 3.2-9 進料口距離基材表面8公分情況下,增加Ⅴ/Ⅲ 比對於 沈積氮化鎵的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙67 3.3 以一維奈米材料為基材,成長氮化鎵奈米材料∙∙∙∙∙∙∙70 3.3-1 以Ge奈米線當基板成長氮化鎵奈米材料∙∙∙∙∙∙70 3.3-2 降低反應時間對Ge奈米線基材上沈積氮化鎵的 影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙80 3.3-3 以原子層磊晶方式,在Ge奈米線及ZnO奈米柱基材 上沈積氮化鎵∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙86 3.3-4改變原料Ⅴ/Ⅲ比在Ge奈米線及ZnO奈米柱基材 上的ALE-GaN成長∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙94 3.3-5 選擇性成長∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙100 第四章 結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙107 參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙109

[01] J. Wu and W. Walukiewicz, Superlattices and Microstructures. , 34,63 (2003)
[02] J. V. Smith , Geometrical and Structural Crystallography. (Wiley, New York, 1982), p.449
[03] S. D. Hersee , X. Sun and X. Wang , Nano Letters. 6 , 1808(2006)
[04] S. Iijima, Nature , 354 , 56(1991)
[05] A.M. Morales and C.M. Lieber, Science, 279, 208(1998).
[06] Hiroaki Okamoto, P.R. Subramanian, Linda Kacprzak. Binary alloy phase diagrams. 1990
[07] R. Q. Zhang, Y. Lifshitz , and S. T. Lee, Advanced. Material.,15, 635(2003)
[08] X. Wang, X. Sun, M. Fairchild, and S. D. Hersee, Applied Physics Letters,89 ,233115(2006)
[09] J.Goldberger, R.He, Y.Zhang, A. Lee, H. Yan, H. J. Cjoi,andP.Yang,
Nature, 422,599(2003)
[10] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho,and K. S. Chung. Applied Physics Letters. 81, 2193( 2002)
[11] H. M. Kim, Y. H. Cho, H. Lee, S. Kim, D. Y. Kim, T.W. Kang, and K. S. Chung.Nano Leters.4, 1059( 2004)
[12] H. M. Kim, T. W. Kang, and K. S. Chung, Advanced. Material.15 , 567(2003)
[13] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo,and K. Y. Heieh. Applied Physics Letters. 82, 1601(2003).
[14] X. M. Cai, A. B. Djursic, and M. H. Xie. Thin Solid Films.515,984
(2006)
[15] T. Kuykendall, P. J. Pauzauskie, Y.Zhang, J.Goldberger, D. Sirbulu, J. Denlinger, and P. Yang.Nature Materials.3, 524(2004)
[16] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang.Nano Letters.3, 1063(2003)
[17] R. R. Lieten, S. Degroote, K. Cheng, M.Leys, M. Kuijk, and G. Borghs. Applied Physics Letters. 89, 252118(2006)
[18] C. Y. Chang, S. J. Pearton, P. J. Huang, G. C. Chi, H. T. Chen, L. C. Chen. Applied Physics Letters. 253, 3196(2007)
[19] 林繼宏,”以二乙基一氯鎵為鎵源先驅物的氮化鎵原子層磊晶之研究”,國立台灣科技大學95年碩士論文。
[20] 王晨宇,”適合作為原子層磊晶氮化鎵的鎵源先驅物之研究”,國立台灣科技大學94年碩士論文。
[21] A. A. Shklyaev, M. Ichikawa, Physicals Review B. 62, 1540(2000)

QR CODE