簡易檢索 / 詳目顯示

研究生: 王暐鳴
Wei-Ming Wang
論文名稱: 主動箝位返馳式轉換器之研製
Design and Implementation of Active-Clamped Flyback Converter
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 謝耀慶
Yao-Ching Hsieh
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 55
中文關鍵詞: 主動箝位返馳式轉換器零電壓切換氮化鎵開關元件
外文關鍵詞: Active-Clamp Flyback converter, Zero Voltage Switching, GaN switching device
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文旨在呈現主動箝位返馳式轉換器電路操作原理,並經由文中介紹的設計流程完成實體電路,透過模擬以及實作驗證設計方法之可行性;開關選用上使用了氮化鎵元件而非矽功率開關,以期待未來達成更高切換頻率;輔助開關以及箝位電容可回收儲存在變壓器漏電感中的能量,以減少出現在變壓器一次側的電壓突波,除此之外,主動箝位電路也可以使主開關達到零電壓切換,以減低出現在主開關上的電壓應力。
      經過原理介紹及設計流程,完成一開關切換頻率為300kHz的主動箝位返馳式轉換器實作電路,於輸入電壓為127V至380V的範圍內,輸出19V/65W的規格,藉此驗證電路系統的運作表現。


    The purpose of this thesis is to present the operation principle of Active Clamp-Flyback converter. By the design rule in the content, we can make a circuit, and check the availability by simulation and experimental result. For the expectation of high frequency operation in the future, we use GaN device rather than using traditional Silicon device for all the switches in the circuit. Auxiliary switch and clamp capacitor in the circuit can recycle the energy in the leakage inductor of transformer. In this way, we can eliminate the voltage spike appear in the primary side of transformer and achieve Zero-Voltage-Switching for the main switch so as to reduce the voltage stress on the main switch.
    After the introduction of operating principle and design rule, we made an active clamp flyback circuit whose switching frequency is 300kHz, input voltage is 127V to 380V, and output specification is 19V/65W. By the experimental result, we can prove the performance of the circuit.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖索引 vii 表索引 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文大綱 2 第二章 氮化鎵開關元件特性 4 2.1 氮化鎵開關元件介紹 4 2.1.1 元件結構 4 2.1.2 氮化鎵元件應用設計考量 5 2.2 開關元件分析與測試 10 第三章 主動箝位返馳式轉換器 13 3.1 架構分析 13 3.2 電路動作分析 14 3.3 電路設計 24 第四章 模擬與實驗結果分析 30 4.1 模擬結果 30 4.2 電路實測波形 35 第五章 結論與未來展望 40 5.1 結論 40 5.2 未來展望 41 第六章 參考文獻 42

    [1] GaN Systems. (2017). Leading a New World of Power System Design [Online]. Available: https://gansystems.com/gan-transistors/about-gan-systems/
    [2] GaN Systems. (2014). PCB Thermal Design Guide for GaN Enhancement Mode Power Transistors [Online]. Available: https://www.mouser.com/catalog/additional/GaN%20Systems_GN005%20App%20Note%202014-11-04.pdf
    [3] GaN Systems. (2016). How to drive GaN Enhancement mo-de HEMT [Online]. Available: https://www.mouser.com/pdfDocs/343654_GaNSystems__GN001_How_To_drive_GaN_EHEMT_Rev_20160426.pdf
    [4] EPC. (2012). Gallium Nitride Technology Overview [Onlin-e]. Available: http://epc-co.com/epc/campaigns/WhatIsGaN/GaN%20Transistors%20for%20Efficient%20Power%20Conversion-chapter-1.pdf
    [5] Alex Lidow, GaN Transistors for Efficient Power Conversion. West Sussex: Wiley, 2015.
    [6] Toshiba. (2018). Power MOSFET Electrical Characteristics [Online]. Available: https://toshiba.semicon-storage.com/info/docget.jsp?did=13415
    [7] Cree, Inc. SiC MOSFET Double Pulse Fixture [Online]. Av-ailable: https://www.wolfspeed.com/downloads/dl/file/id/150/product/0/sic_mosfet_double_pulse_fixture.pdf
    [8] Pallavi Bharadwaj, Ashish Kumar, Vinod John, “Design and Fabrication of Switching Characterization Set-up for GaN FETs,” in IEEE International Conference on Power Electronics, 2016.
    [9] S. S. Ahmad, G. Narayanan, “Double Pulse Test Based Switching Characterization of SiC MOSFET,” in IEEE National Power Electronics Conference, 2017, pp. 319-324.
    [10] Alexander Anthon, Juan C. Hernandez, Zhe Zhang, Michael A.E. Andersen, “Switching Investigations on a SiC MOSFET in a TO-247 Package,” in Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 1854-1860.
    [11] Texas Instruments. (2018). What is active clamp flyback [Online]. Available: https://training.ti.com/what-active-clamp-flyback?HQS=app-hvp-hvc-activeclampflyback-asset-tr-ElectronicDesign-wwe&DCM=yes&dclid=CjkKEQiAmuHhBRCr4oSZ8LWZ0bcBEiQAhirHFgyV-6BmGt0H9llf_CMXMpwLC0wQ7DL8DYhbL-utYXzw_wcB
    [12] Texas Instruments. (2018). Intelligently control an active clamp flyback [Online]. Available: https://e2e.ti.com/blogs_/b/powerhouse/archive/2018/03/01/intelligently-control-an-active-clamp-flyback?HQS=app-hvp-hvc-activeclampflyback-asset-blog-ElectronicDesign-wwe&DCM=yes&dclid=CjkKEQiAmuHhBRCr4oSZ8LWZ0bcBEiQAhirHFhvs9dhCfDYuTkaxKWKMqbBFtODLjyiPf6OSk_egRMDw_wcB
    [13] Robert Watson, New Techniques in the Design of Distributed Power Systems, VA: Virginia Polytechnic Institute and State University, 1998, pp. 54-61.
    [14] P. Anto Jailyn, Alagu Dheeraj, V. Rajini, “Analysis of Active Clamp Flyback Converter,” Canadian Center of Science and Education, vol.9, no. 1, pp. 12-24, Nov. 2014.
    [15] Ruyu Li, A MHz Switching Active Clamp Flyback Converter as a Power Factor Correction Stage for Lighting. Delft University of Technology, 2017, pp. 11-24.
    [16] Hyun-Lark Do, Active Clamped Resonant Flyback with a Synchronous Rectifier. Seoul National University of Science and Technology, 2011, pp. 75-78.
    [17] Texas Instruments. (2016). Synchronous Rectification in High–Performance Power Converter Design [Online]. Available: http://www.ti.com/lit/wp/snva595a/snva595a.pdf
    [18] R. Watson, F. C. Lee, G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Transactions on Power Electronic, vol. 11, no. 1, pp. 162-169, Jan. 1996.
    [19] Bor-Ren Lin, Huann-Keng Chiang, Kao-Cheng Chen, David Wang, “Analysis, design and implementation of an active clamp flyback converter,” International Conference on Power Electronics and Drives Systems, 2005, pp. 424-429.
    [20] Yu-Chen Liu, Bing-Siang Huang, Cheng-Hung Lin, Katherine A. Kim, Huang-Jen Chiu, “Design and Implementation of a High Power Density Active-Clamped Flyback Converter,” International Power Electronics Conference, 2018, pp.2092-2096.

    QR CODE