簡易檢索 / 詳目顯示

研究生: Hidayat
Hidayat
論文名稱: 矽(n-Si)上製造的退火氧化鉬(MoO3)和矽(p-Si)上製造的石墨碳氮化物(g-C3N4)異質結合光電探測器
Annealed Molybdenum Oxide (MoO3) Fabricated on Silicon (n-Si) and Graphitic Carbon Nitride (g-C3N4) Fabricated on Silicon (p-Si) Heterojunction Photodetectors
指導教授: 周賢鎧
Shyan-Kay Jou
口試委員: 蔡孟霖
Meng-Lin Tsai
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 102
中文關鍵詞: molybdenum oxidegraphitic carbon nitrideheterojunctionphotodetector
外文關鍵詞: molybdenum oxide, graphitic carbon nitride, heterojunction, photodetector
相關次數: 點閱:331下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Molybdenum oxide (MoO3) is an excellent material because of its electrochromic and photochromic properties. Due to its oxidation and water stability, thermal resistance, tunable bandgap in the visible range of the spectrum, high hardness and high thermal conductivity, graphitic carbon nitride (g-C3N4) is a material of excellent potential for optoelectronic applications. In this research, the effect of the annealing temperature on the performance of MoO3/n-Si photodetector is investigated. g-C3N4 also made to know the performance of the g-C3N4/p-Si photodetector before making the MoO3/g-C3N4 heterojunction photodetector. The MoO3 thin films were grown by RF magnetron sputtering, while g-C3N4 was grown by thermal condensation process. The MoO3 films were annealed at 300-500 oC. The MoO3 thin films SEM analysis concludes that the rise of the annealing temperature would change the morphology and increase the films' thickness. The g-C3N4 grown on p-Si indicated continuous films with nanoparticles and the thickness is around 50 nm. The XRD and Raman analysis indicated that the annealing temperature increases induced phase transformations and increased crystalline quality of MoO3 thin films. The XRD analysis from g-C3N4 powder and thin films confirms the typical pattern of g-C3N4. The transmittance of MoO3 thin films increased as the annealing temperature increased. The graph shows that the maximum transmittance wavelength for the MoO3 thin films is around 400-500 nm. The bandgap of MoO3 thin films evaluated to be 2.6 to 3.55 eV. The bandgap of g-C3N4 was evaluated to be 2.55 eV. For the electrical properties of MoO3/n-Si, the highest rectification ratio is at the annealing temperature of 400 oC observed to be ~2000. The photoresponse shows a weak response at negative bias.The highest photoresponse discovered at 400 oC annealing temperature under 467 nm wavelength to be 4707.53 at 0 V. whereas at 0.1 V The highest photoresponse discovered at 450 oC under 467 nm to be 22.20. The majority of the annealing temperatures show good photoresponse under visible light. The high value for responsivity is at 450 oC to be higher than 350 mA/W, with the highest is 876.50 mA/W at 467 nm. The majority of the samples show a high EQE percentage at visible light and eventually decreased as the wavelength of light increased to 632 nm. The rise time of the MoO3/n-Si photodetector is around 2 ms and the fall time is around 3 ms. The MoO3 annealed at 500 oC shows no response time. The results confirm that the annealing temperature affects the performance of the MoO3 thin films. For the electrical properties of the g-C3N4/p-Si, the highest rectification ratio is at ±2 V to be 60.76. The highest photoresponse discovered under 395 nm wavelength to be 55.69 at 0 V. For responsivity, the highest value is 15.54 mA/W at 395 nm. The results show the responsivity is decreased as the wavelength increased. The rise time of the g C3N4/p-Si photodetector is 2.13 ms and the fall time is 6.26 ms. The results confirm that g-C3N4/n-Si heterojunction has good performance.

ABSTRACT............................................................................i ACKNOWLEDGEMENT...................................................................iii TABLE OF CONTENTS..................................................................iv LIST OF FIGURES....................................................................vi LIST OF TABLES.....................................................................xi CHAPTER 1 INTRODUCTION..............................................................1 1.1. Background.....................................................................1 1.2. Research Objectives............................................................2 CHAPTER II LITERATURE REVIEW........................................................3 2.1. Semiconductor Basics...........................................................3 2.2. Semiconductor Devices..........................................................4 2.3. Heterojunction.................................................................4 2.4. Molybdenum Oxides..............................................................6 2.5. Graphitic Carbon Nitride......................................................21 2.6. MoO3/g-C3N4 Heterojunction....................................................27 2.7. Photodetector.................................................................29 CHAPTER III EXPERIMENTAL METHOD....................................................32 3.1. Experimental Flowchart........................................................32 3.2. Experimental Materials........................................................33 3.3. Experimental Equipment........................................................33 3.4. Experimental Procedures.......................................................34 3.4.1. Sample Preparation..........................................................34 3.4.2. Deposition of MoO3..........................................................34 3.4.3. Thermal condensation of g-C3N4..............................................35 3.4.4. Fabrication of MoO3/n-Si and g-C3N4/p-Si Heterojunction Photodetector Device.............................................................................36 3.4.5. Fabrication of MoO3/g-C3N4 Heterojunction Photodetector Device..............37 3.5. Field Emission Scanning Electron Microscopy (FE-SEM)..........................38 3.6. X-Ray Diffraction (XRD).......................................................39 3.7. Raman Spectroscopy............................................................40 3.8. UV-Vis-NIR Spectroscopy.......................................................41 3.9. I-V Measurement...............................................................42 3.10. Photo-response Measurement...................................................42 CHAPTER IV RESULT AND DISCUSSION...................................................43 4.1. Molybdenum Oxide Films........................................................43 4.1.1. SEM Images of MoO3 Films....................................................43 4.1.2. XRD Analysis of MoO3 Films..................................................46 4.1.3. Raman Measurement of MoO3 Films.............................................50 4.1.4. Optical Analysis of MoO3 Films..............................................51 4.1.5. Electrical Properties Analysis of MoO3/n-Si.................................55 4.2. Graphitic Carbon Nitride Films................................................68 4.2.1. SEM Images of g-C3N4 Films..................................................68 4.2.2. XRD Analysis of g-C3N4 Films................................................68 4.2.3. Optical Analysis of g-C3N4 Films............................................69 4.2.4. Electrical Properties Analysis of g-C3N4/p-Si...............................71 CHAPTER V CONCLUSION AND FUTURE WORK...............................................76 5.1. Conclusion....................................................................76 5.2. Future Work...................................................................77 REFERENCES.........................................................................78 APPENDIX...........................................................................83

[1] Zhao, C., Liang, Z., Su, M., Liu, P., Mai, W., Xie, W. (2015). Self-Powered, high-Speed and visible–near Infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering. ACS Applied Materials & Interfaces, 7(46), 25981-25990. doi:10.1021/acsami.5b09492
[2] Lin, Y., Chen, Y., Liu, T., Lin, C., Wang, C., Hsu, Y., Lin, C. (2019). Influence of electrode materials on molybdenum oxide/n-Si photodetectors. Journal of Physics D: Applied Physics, 53(4), 045101. doi:10.1088/1361-6463/ab50ae
[3] Ahmad, H., Afzal, N., Rafique, M., Ahmed, A. A., Ahmad, R., Khaliq, Z. (2020). Postdeposition annealed MoO3 film based high performance MSM UV photodetector fabricated on Si (100). Ceramics International, 46 (12), 20477-20487. doi:10.1016/j.ceramint.2020.05.150
[4] Liu, Y., Cen, G., Wang, G., Huang, J., Zhou, S., Zheng, J., Mai, W. (2019). High performance MoO3−x/Si heterojunction photodetectors with nanoporous pyramid Si arrays for visible light communication application. Journal of Materials Chemistry C, 7(4), 917-925.doi:10.1039/c8tc05850d
[5] Bian, J., Li, Q., Huang, C., Li, J., Guo, Y., Zaw, M., Zhang, R. (2015). Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications. Nano Energy, 15, 353-361. doi:10.1016/j.nanoen.2015.04.012
[6] Mohamed, N. A., Safaei, J., Ismail, A. F., Jailani, M. F., Khalid, M. N., Noh, M. F., Teridi, M.A. (2019). The influences of post-annealing temperatures on fabrication graphitic carbon nitride, (g-C3N4) thin film. Applied Surface Science, 489, 92-100.doi:10.1016/j.apsusc.2019.05.312
[7] Huang, L., Xu, H., Zhang, R., Cheng, X., Xia, J., Xu, Y., Li, H. (2013). Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible light photoactivity. Applied Surface Science, 283, 25 32.doi:10.1016/j.apsusc.2013.05.106
[8] Xie, Z., Feng, Y., Wang, F., Chen, D., Zhang, Q., Zeng, Y., Liu, G. (2018). Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Applied Catalysis B:Environmental, 229, 96-104. doi:10.1016/j.apcatb.2018.02.011
[9] Xiao, H. (2001). Introduction to Semiconductor Manufacturing Technology, 2nd Ed. New Jersey: Pearson Prentice Hall.
[10] Sze, S. M. (2003). Semiconductor Devices, Physics and Technology. New York: Wiley.
[11] Mahato, S., Voz, C., Biswas, D., Bhunia, S., Puigdollers, J. (2018). Defect states assisted charge conduction in Au/MoO3–x/n-Si Schottky barrier diode. Materials Research Express,6(3), 036303. doi:10.1088/2053-1591/aaf49f
[12] Park, S. I., Baik, S. J., Im, J., Fang, L., Jeon, J., Lim, K. S. (2011). Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide. Applied Physics Letters, 99(6), 063504. doi:10.1063/1.3624591
[13] Chen, D., Gao, M., Wan, Y., Li, Y., Guo, H., Ma, Z. (2019). Electronic structure of molybdenum-involved amorphous silica buffer layer in MoOx/n-Si heterojunction. Applied Surface Science, 473, 20-24. doi:10.1016/j.apsusc.2018.12.112
[14] Pradeesh, G., V, Ponnuswamy., B, Gowtham., R, Suresh., J, Chandrasekaran. (2018). Influence of annealing temperature on the properties of molybdenum oxide nanoparticles prepared through chemical precipitation method for p-n junction diode application. Optik, 175, 217-227. doi:10.1016/j.ijleo.2018.09.020
[15] Park, W., Lee, G., Kim, J. (2018). Reactive-sputtered transparent MoO3 film for highperforming infrared Si photoelectric devices. Sensors and Actuators A: Physical, 271, 251-256. doi:10.1016/j.sna.2018.01.041
[16] Guha, P., Ghosh, A., Sarkar, A., Mandal, S., Ray, S. K., Goswami, D. K., Satyam, P. V. (2018). P-type β-MoO2 nanostructures on n-Si by hydrogenation process: Synthesis and application towards self-biased UV-visible photodetection. Nanotechnology, 30(3), 035204. doi:10.1088/1361-6528/aaeadc
[17] Raza, S. H., Afzal, N., Rafique, M., Imran, M., Ahmad, R. (2019). structural and morphological properties of annealed MoO3 films on different substrates. Surface Review and Letters, 27(05), 1950150. doi:10.1142/s0218625x19501506
[18] Zheng, Q., Huang, J., Cao, S., Gao, H. (2015). A flexible ultraviolet photodetector based on single crystalline MoO3 nanosheets. Journal of Materials Chemistry C, 3(28), 7469-7475. doi:10.1039/c5tc00850f
[19] Klinbumrung, A., Thongtem, T., Thongtem, S. (2012). Characterization of orthorhombic α- MoO3 microplates produced by a microwave plasma process. Journal of Nanomaterials,2012, 1-5. doi:10.1155/2012/930763
[20] Madhavi, V., Kondaiah, P., Rayudu, S. S., Hussain, O. M., Uthanna, S. (2013). Properties of MoO3 films by thermal oxidation: Annealing induced phase transition. Materials Express, 3(2), 135-143. doi:10.1166/mex.2013.1114
[21] Meng, L., Yamada, A. (2018). Low-resistance orthorhombic MoO3-x thin film derived by twostep annealing. Thin Solid Films, 665, 179-183. doi:10.1016/j.tsf.2018.09.017
[22] Muchuweni, E., Sathiaraj, T., Nyakotyo, H. (2017). Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon, 3(4). doi:10.1016/j.heliyon.2017.e00285
[23] Pachlhofer, J. M., Martín-Luengo, A. T., Franz, R., Franzke, E., Köstenbauer, H., Winkler, J., Mitterer, C. (2017). Non-reactive dc magnetron sputter deposition of Mo-O thin films from ceramic MoOx targets. Surface and Coatings Technology, 332, 80-85. doi:10.1016/j.surfcoat.2017.07.083
[24] Neamen, D. A. (2003). Semiconductor Physics and Devices: Basic Principles. Boston: McGraw-Hill.
[25] Han, B., Gao, M., Wan, Y., Li, Y., Song, W., Ma, Z. (2018). Effect of post-annealing on the properties of thermally evaporated molybdenum oxide films: Interdependence of work function and oxygen to molybdenum ratio. Materials Science in Semiconductor Processing, 75, 166-172. doi:10.1016/j.mssp.2017.11.037
[26] Zhang, J., Hu, X., Xi, J., Kong, Z., Ji, Z. (2013). Depth profiling of Al diffusion in silicon wafers by laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 28(9), 1430. doi:10.1039/c3ja50115a
[27] Xiang, D., Han, C., Zhang, J., Chen, W. (2014). Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Scientific Reports, 4(1). doi:10.1038/srep04891
[28] Lu, J., Wang, Y., Huang, J., Cao, L., Li, J., Hai, G., Bai, Z. (2016). One-step synthesis of g-C3N4 hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity. Materials Science and Engineering: B, 214, 19-25. doi:10.1016/j.mseb.2016.08.003
[29] Lublow, M., Fischer, A., Merschjann, C., Yang, F., Schedel-Niedrig, T., Veyan, J., Chabal, Y. J. (2014). Graphitic carbon nitride nano-emitters on silicon: A photoelectrochemical heterojunction composed of earth-abundant materials for enhanced evolution of hydrogen. J. Mater. Chem. A, 2(32), 12697-12702. doi:10.1039/c4ta01711k
[30] Prakash, N., Kumar, G., Singh, M., Barvat, A., Pal, P., Singh, S. P., Khanna, S. P. (2018). Binary multifunctional ultrabroadband self‐powered g‐C3N4/Si heterojunction high-performance photodetector. Advanced Optical Materials, 6(14), 1800191. doi:10.1002/adom.201800191
[31] Khashan, K. S., Mohsin, M. H. (2015). Characterization of carbon nitride nanoparticles prepared by laser ablation in liquid for optoelectronic application. Surface Review and Letters, 22(04), 1550055. doi:10.1142/s0218625x15500559
[32] Adhikari, S., Kim, D. (2020). Heterojunction C3N4/MoO3 microcomposite for highly efficient photocatalytic oxidation of Rhodamine B. Applied Surface Science, 511, 145595. doi:10.1016/j.apsusc.2020.145595
[33] Li, Y., Huang, L., Xu, J., Xu, H., Xu, Y., Xia, J., Li, H. (2015). Visible-light-induced blue MoO3–C3N4 composite with enhanced photocatalytic activity. Materials Research Bulletin, 70, 500-505. doi:10.1016/j.materresbull.2015.05.013
[34] Zahedi, F., Dariani, R., Rozati, S. (2013). Ultraviolet photoresponse properties of ZnO:N/p-Si and ZnO/p-Si heterojunctions. 199(Sensors and Actuators A: Physical), 123-128. doi:https://doi.org/10.1016/j.sna.2013.05.009
[35] Afzal, N., Devarajan, M., Ibrahim, K. (2016). Growth of AlInN film on GaAs substrate and its application to MSM UV photodetector. Materials Research Express, 3(8), 085904. doi:10.1088/2053-1591/3/8/085904
[36] Ahmed, A. A., Hashim, M., Abdalrheem, R., Rashid, M. (2019). High-performance multicolor metal-semiconductor-metal Si photodetector enhanced by nanostructured NiO thin film. Journal of Alloys and Compounds, 798, 300-310. doi:10.1016/j.jallcom.2019.05.286
[37] Ghosh, A., Guha, P., Mukherjee, S., Bar, R., Ray, S. K., Satyam, P. V. (2016). Growth of Au capped GeO2 nanowires for visible-light photodetection. Applied Physics Letters, 109(12), 123105. doi:10.1063/1.4962978
[38] Bogatin, E. (2011). Signal and Power Integrity - Simplified. Upper Saddle River: Prentice Hall.
[39] Billah, Areef. (2016). Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication. Thesis for: Master of Science in Physics. doi:10.13140/RG.2.2.23988.76166.
[40] Inaba, K., Kobayashi, S., Uehara, K., Okada, A., Reddy, S. L., Endo, T. (2013). High resolution x-ray diffraction analyses of (La,Sr)MnO3/ZnO/Sapphire(0001) double heteroepitaxial films. Advances in Materials Physics and Chemistry, 03(01), 72-89. doi:10.4236/ampc.2013.31a010
[41] Raman spectroscopy. (2020, December 31). Retrieved January 3, 2021, from https://en.wikipedia.org/wiki/Raman_spectroscopy
[42] Gour, Shruti. (2010). Manufacturing nano-sized powders using salt- and sugar-assisted milling. Thesis for: Master of Science in Biomedical Engineering.
[43] Ng, T.‐W., Yang, Q.‐D., Mo, H.‐W., Lo, M.‐F., Zhang, W.‐J. and Lee, C.‐S. (2013). Widespectral photoresponse of black molybdenum oxide photodetector via sub‐bandgap electronic transition. Advanced Optical Materials, 1: 699-702. doi:10.1002/adom.201300220
[44] Zheng, Qinghong., Huang, Jin., Yang, Haiyang., Chen, Yanqin. (2016). A high-performance nanobridged MoO3 UV photodetector based on nanojunctions with switching characteristics. Nanotechnology. 28. 045202. doi:10.1088/1361-6528/28/4/045202.

QR CODE