簡易檢索 / 詳目顯示

研究生: 賴梅婷
Mei-Ting Lai
論文名稱: 無鉛銲料與鎳鈀鈷合金之界面反應
Interfacial Reactions between Lead-Free Solders and the Ni-xPd-yCo Alloys
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 陳信文
Sinn-Wen Chen
林士剛
Shih-Kang Lin
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 80
中文關鍵詞: 無鉛銲料Ni-Pd-Co合金界面反應
外文關鍵詞: Lead-free solders, Ni-Pd-Co alloys, interfacial reaction
相關次數: 點閱:297下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在構裝技術中,為避免基材與銲點的界面反應,Ni常被作為擴散阻障層。有文獻指出微量Co的添加能改善銲點的機械性質。Pd層的導入能有效抑制介金屬相的生長,增加擴散阻障層之功能,然而目前尚未有文獻探討將Pd及Co元素添加至Ni基材中作為擴散阻障層。因此本研究以電弧融煉的方式來製備Ni-Pd-Co合金作為擴散阻障層之功效,並選用純Sn、Sn-3.0Ag-0.5Cu與Sn-9Zn三種無鉛銲料,與Ni-xPd-yCo基材於反應溫度240、270及300oC,分別進行30分鐘、1、2及5小時的液/固界面反應,並探討界面反應後之介金屬種類、反應機制、動力學、成長速率常數與反應活化能,並量測銲點的機械強度與潤濕性質,評估接點的可靠度。藉此了解Pd及Co金屬的添加對界面反應的影響,並提供未來Ni-Pd-Co合金應用在阻障層之相關資訊。
實驗結果顯示,在純Sn銲料系統中,生成之介金屬相為Ni3Sn4相。在SAC銲料系統,於240oC反應0.5-2小時所生成之介金屬相為(Cu, Ni)6Sn5相與(Ni, Cu)3Sn4相;而於240oC反應5小時及270、300oC反應時,界面處僅有(Ni, Cu)3Sn4相生成。在S9Z銲料系統,於240、270及300oC反應時所生成之介金屬相為Ni5Zn21相;在300oC反應5小時後所生成之介金屬相為Ni5Zn21、Sn及相,其中τ為Sn-Zn-Ni三元相。此三個系統之介金屬相厚度與反應時間之平方根呈線性關係,因此反應機制皆為擴散控制所主導。在可靠度試驗中,由結果可知Pd及Co的添加與銲料破斷的剪切強度相關。在潤濕性質試驗中,由結果知Pd及Co的添加使表面張力下降,促使銲料與基材的接觸面積增加,並提升其潤濕性質。


Ni is widely used as a diffusion barrier to avoid interfacial reaction between solders and the substrate in the packaging technology. In addition, there are studies regarding improving the reliability of lead-free solder joint by adding Co and Co-based alloys. Adding Pd can improve the wettability and suppress the formation of intermetallic compound. However, doping the Pd and Co elements to Ni substrate as a diffusion barrier has not been studied yet. The Ni-xPd-yCo alloys are prepared by arc melting. This study investigated the interfacial reactions of Sn/Ni-xPd-yCo, SAC/Ni-xPd-yCo and SZ/Ni-xPd-yCo reacted at 240, 270 and 300oC for 30 min, 1, 2 and 5 h.
According to the results, the Ni3Sn4 phase was formed at the interface in the Sn/Ni-xPd-yCo system. In the SAC/Ni-xPd system, the (Cu, Ni)6Sn5 and (Ni, Cu)3Sn4 phases were formed at 240oC. When the reaction couples reacted at 270 and 300oC, only (Ni, Cu)3Sn4 phase formed at interface. In the SZ/Ni-xPd-yCo system, the Ni5Zn21 phase formed at the interface when the reaction couples reacted at 240, 270 and 300oC. After reacted at 300oC for 5 h, the Ni5Zn21, Sn and τ phases were formed at the interface. The thickness of intermetallic compounds increased with longer reaction times and higher temperatures. Also, the thickness was proportional to the square root of reaction time. The interfacial reaction mechanism was diffusion controlled. In the reliability test, the thin reaction phase enhanced the stress. In the wettability test, adding Pd and Co had lower surface tension.

摘要......................................................................I Abstract................................................................ II 誌謝.....................................................................III 目錄......................................................................IV 圖目錄...................................................................VII 表目錄...................................................................XII 第一章、前言................................................................1 第二章、文獻回顧.............................................................3 2-1 電子構裝簡介............................................................3 2-1.1 覆晶接合..............................................................5 2-2 無鉛銲料................................................................7 2-2.1 純錫.................................................................8 2-2.2 錫-銀-銅.............................................................9 2-2.3 錫-鋅...............................................................11 2-3 界面反應與擴散理論......................................................12 2-3.1 界面反應理論.........................................................12 2-3.2 擴散理論.............................................................14 2-4 界面反應相關文獻........................................................16 2-4.1 Solder/Ni界面反應....................................................16 2-4.2 Solder/Co界面反應....................................................21 2-4.3 Solder/Ni-Co界面反應.................................................22 2-4.4 其他界面反應.........................................................24 2-5 潤濕性分析.............................................................25 2-6 機械性質測試...........................................................27 第三章、實驗方法............................................................29 3-1 鎳-鈀-鈷合金基材之製備..................................................29 3-2 銲料製備...............................................................31 3-3 反應偶製備.............................................................31 3-4 金相處理...............................................................32 3-5 界面觀察與分析.........................................................32 3-6 機械性質...............................................................33 3-6.1錫球製備..............................................................33 3-6.2試片製備..............................................................34 3-6.3推球試驗..............................................................35 3-7 潤濕性質分析...........................................................36 第四章、結果與討論..........................................................37 4-1 純Sn銲料與Ni-xPd-yCo合金基材反應偶......................................37 4-1.1界面反應..............................................................37 4-1.2 Sn/Ni-xPd-yCo反應偶之界面反應動力學...................................42 4-1.3 Sn/Ni-xPd-yCo反應偶接點之機械性質.....................................45 4-1.4 Sn/Ni-xPd-yCo反應偶接點之潤濕性質.....................................47 4-2 Sn-3.0Ag-0.5Cu銲料與Ni-xPd-yCo合金基材反應偶............................48 4-2.1界面反應..............................................................48 4-2.2 SAC/Ni-xPd-yCo反應偶之界面反應動力學..................................56 4-2.3 SAC/Ni-xPd-yCo反應偶接點之機械性質....................................59 4-2.4 SAC/Ni-xPd-yCo反應偶接點之潤濕性質....................................62 4-3 Sn-9Zn銲料與Ni-xPd-yCo合金基材反應偶....................................63 4-3.1界面反應..............................................................63 4-3.2 SZ/Ni-xPd-yCo反應偶之界面反應動力學...................................70 4-4 各銲料與Ni-xPd-yCo合金反應偶所生成之介金屬相..............................73 第五章、結論...............................................................74 第六章、參考文獻............................................................76

[1] C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, Materials Science and Engineering Reports, 44 (2004) 1-44.
[2] “WEEE Regulations”EU-Directive 96/EC (2002).
[3] “RoHS Regulations”EU-Directive 95/EC (2002).
[4] H. Hao, Y. Shi, Z. Xia, Y. Lei, F. Guo, Journal of Electronic Materials, 37 (2008) 2-8.
[5] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello and C. A. Handwerker, Journal of Electronic Materials, 29 (2000) 1122-1136.
[6] J. Mittal, S. M. Kuo, Y. W. Lin and K. L. Lin, Journal of Electronic Materials, 38 (2009) 2436-2442.
[7] G. Ghosh, Acta Materialia, 48 (2000) 3719-3738.
[8] C. C. Chen and S. W. Chen, Journal of Electronic Materials, 35 (2006) 1707-1707.
[9] Y. H. Chao, S. W. Chen, C. H. Chang, C. C. Chen, Metallurgical and Materials Transactions, 39 (2008) 477-489.
[10] H. Nishikawa, A. Komatsu and T. Takemoto, Journal of electronic Materials, 36 (2007) 1137-1143.
[11] Y. W. Wang, Y. W. Lin, C. T. Tu and C. R. Kao, Journal of Alloys and compound, 478 (2009) 121-127.
[12] H. Nishikawa, A. Komatsu and T. Takemoto, Materials Transactions, 49 (2008) 1518-1523.
[13] D. H. Kim, M. G. Cho, S. K. Seo and H. M. Lee, Journal of electronic Materials, 38 (2009) 39-45.
[14] C. F. Tseng, T. K. Lee, G Ramakrishna, K. C. Liu, J. G. Duh, Materials Letters, 65, (2011) 3216–3218.
[15] W. Sun, W. H. Zhu, E. S. W. Poh, H. B. Tan and R. T. Gan, Proceeding of International Conference on Electronic Packaging Technology & High Density Packaging, (2008) 1-8.
[16] P. Ratchev, S. Stoukatch and B. Swinnen, Microelectronic Reliability, 46, (2006) 1315-1325.
[17] Y. Oda, M. Kiso, S. Kurosaka, A. Okada, K. Kitajima and S. Hashimoto, Proceeding of International Microelectronics & Packaging Society, IMAPS (2008).
[18] D. P. Seraphim, R. C. Lasky and C. Y. Li, published by McGraw-Hill, New York (1989).
[19] J. H. Lau, C. P. Wong, J. L. Prince and W. Nakayama, published by McGraw-Hill, New York (1998).
[20] 洪惠慈,錫鋅系無鉛銲錫與金屬化銅基材之接合行為與界面反應,國立成功大學材料科學及工程學系研究所碩士論文 (2004)。
[21] 林定皓,「電子構裝技術概論」,台灣電路板協會(2010)。
[22] 田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社(2005)。
[23] http://www.ami.ac.uk/courses/topics/0260_fc/
[24] N. C. Lee, Soldering & Surface Mount Technology, 9 (1997) 65 – 69.
[25] I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, (1987).
[26] W. Peng, Microelectronics Reliability, 49 (2009) 86-91.
[27] J. Smetana, IEEE Transactions on Electronics Packaging Manufacturing, 30 (2007) 11-12.
[28] C. F. Chen, S. K. Lahiri, P. Yuan and J. B. H. How, Electronics Packing Technology Conference, 2000.
[29] H. Baker (Eds.), in: ASM Handbook- Alloy Phase Diagram, Materials Park, ASM International, Ohio, p.2.68, p.2.76, p.2.79, p.2.182, p. 2.313, p.2.318 (1992).
[30] I. E. Anderson, Lead-Free Electronic Solders, 18 (2007) 55-76.
[31] N. Saunders and A. P. Miodownik, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1990).
[32] K. S. Kim, S. H. Huh and K. Suganuma, Materials Science and Engineering, 333 (2002) 106-114.
[33] K. L. Lin and T. P. Liu, Oxidation of Metals, 50 (1998) 255-267.
[34] S. W. Chen, C. Y. Chou and Y. S. Chang, Journal of Materials Research, 21 (2006) 1849-1856.
[35] P. Nash and A. Nash, Bulletin of Alloy Phase Diagram, 6 (1985) 350-359.
[36] D. Gur and M. Bamberger, Acta Materialia, 46 (1998) 4917-4923.
[37] C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, Journal of Electronic Materials 31 (2002) 584-590.
[38] C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao and D. S. Jiang, Journal of Electronic Materials, 35 (2006) 1017-1024.
[39] P. Nash and Y. Y. Pan, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, Ohio (1991).
[40] W. K. Liou, Y. W. Yen and C. C. Jao, Journal of Electronic Materials, 38 (2009) 2222-2227.
[41] C. H. Wang and H. H. Chen, Journal of Electronic Materials, 39 (2010) 2375-2381.
[42] W. J. Tomlinson and H. G. Rhodes, Journal of Materials Science, 22 (1987) 1769-1772.
[43] W. H. Tao, C. Chen, C. E. Ho, W. T. Chen and C. R. Kao, Chemistry of Materials, 13 (2001) 1051-1056.
[44] C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, Journal of Electronic Materials, 31 (2002) 584-590.
[45] L. Liu, C. Andersson and J. Liu, Journal of Electronic Materials, 33 (2004) 935-939.
[46] C. H. Wang and S. W. Chen, Intermetallics, 16 (2008) 524-530.
[47] W. J. Zhu, J. Wang, H. S. Liu, Z. P. Jin and W. P. Gong, Materials Science and Engineering A, 456 (2007) 109-113.
[48] Y. H. Chao, S. W. Chen, C. H. Chang and C. C. Chen, Matellurgical and Materials Transaction A: Physical Metallurgy and Materials Science, 39 (2008) 477-489.
[49] C. C. Chen and Y. T. Chan, Intermetallics, 16 (2008) 524-530.
[50] Y. T. Chen, Y. T. Chan and C. C. Chen, Journal of Alloys and Compounds, 507 (2010) 419-424.
[51] H. F. Lin, Y. C. Chang and C. C. Chen, Journal of Electronic Materials, 43 (2014) 3333-3340.
[52] S. T. Kao and J. G. Duh, Journal of Electronic Materials, 34 (2005) 1129-1134.
[53] C. Y. Ho and J. G. Duh, Materials Letters, 92 (2013) 278-280.
[54] J. C. Berg, Marcel Dekker. Inc., New York, chapter 1, (1993).
[55] Howard H. Manko, “Solders and soldering,” McGraw-Hill Book Company, U.S.A., 1964.
[56] R. J. Klein Wassink, Electrochemical Publications, Isle of Man, British Isles, England, (1989) 300-370.
[57] Y. H. Hu, S. B. Xue, H. Wang, H. Ye, Z. X. Xiao and L. L. Gao, Journal of Materials Science: Materials in Electronics, 22 (2011) 481-487.
[58] J. H. L. Pang, K. H. Tan, X. Shi and Z. P. Wang, IEEE Transactions on Components and Packaging Technologies, 24 (2001) 10-15.
[59] D. J. Xie, Y. C. Chan, J. K. L. Lai and I. K. Hui, IEEE Transactions on Component Packaging and Manufacturing Technology-Part B, 19 (1996) 669-678.
[60] ASTM F1269-89, “Test Methods for Destructive Shear Testing of Ball Bonds,” American Society for testing of Materials, 1995.
[61] 李宜珊,無鉛銲料與鎳鈀合金之界面反應,國立台灣科技大學材料科學與工程系研究所碩士論文 (2014)。
[62] C. H. Lin, S. W. Chen and C. H. Wang, Journal of Electronic Materials, 31 (2002) 907-915.
[63] S. W. Chen, C. M. Hsu, C. Y. Chou and C. W. Hsu, Progress in Nature Science: Materials International, 21 (2011) 386-391.
[64] B. F. Dyson, T. R. Anthony and D. Turnbull, Journal of Applied Physics, 38 (1967) 3408-3416.
[65] C. H. Wang, H. H. Chen and P. Y. Li, Materials Chemistry and Physics, 136 (2012) 325-333.
[66] M. Y. Chiu, S. S. Wang and T. H. Chuang, Journal of Electronic Materials, 31 (2002) 494-499.

QR CODE