簡易檢索 / 詳目顯示

研究生: 李旻哲
Min-Zhe Lee
論文名稱: 基於基因演算法之自主學習PID速度控制器及麥克納姆輪移動機器人之軌跡控制
Genetic Algorithms Based Self-learning PID Speed Controllers for the Trajectory Control of a Mecanum-wheeled Mobile Robot
指導教授: 施慶隆
Ching-Long Shih
口試委員: 施慶隆
Ching-Long Shih
黃志良
Chih-Lyang Hwang
李文猶
Wen-Yo Lee
吳修明
Hsiu-Ming Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: 基因演算法自主學習離線與線上學習PID控制器移動機器人
外文關鍵詞: Genetic Algorithm, Self-learning, Offline and Online Learning, PID Controller, Mecanum-wheeled Mobile Robot
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在運用基因演算法讓麥克納姆輪移動機器人,以自適應的方式找到每個驅動輪之最佳PID速度控制增益,以改善移動機器人驅動輪之轉速誤差,進而優化移動機器人之軌跡誤差。在參數訓練的過程中融合離線學習與線上學習架構,運用基因演算法搜尋全域最佳解的特性,透過不同控制參數染色體的繁衍,取代原本需要手動調整PID參數之步驟。
在離線學習階段結合自建置之系統模擬器與基因演算法,以模擬的方式進行參數訓練,有效的縮短訓練時間,並且將最佳參數聚焦於可能之候選區間。而在線上學習之訓練結構中,則以粗微調兩階段方式進行訓練,並且分別利用實際移動機器人之驅動輪轉速誤差以及移動機器人之移動軌跡誤差,做為基因演算法之損失函數分數,反饋基因序列之控制成效,讓移動機器人於運動過程中找到每一個驅動輪之最佳PID速度控制增益,達成自主學習之PID控制器設計。
本移動機器人之軌跡控制,是在程式控制端設計循環式狀態機,搭配麥克納姆輪移動機器人之反運動學公式,以梯形加減速進行路徑規劃,最後依照軌跡之控制點資訊依序傳送控制指令,實現麥克納姆輪移動機器人之軌跡控制。


This thesis aims to find the best PID speed control gains for each driving wheel by using genetic algorithms so as to improve the trajectory control error of a Mecanum wheeled mobile robot. The process of PID parameters tuning is done in two stages, an offline learning and followed by an online learning. Genetic algorithms are applied to search for the best PID parameters without manual adjustment.
In the offline learning stage, a simulator system is built and the genetic algorithm is used to conduct parameter search. In this way, it effectively shortens the training time and focuses the best parameters on the possible candidate interval. In the online learning stage, the training process is consistent of coarse and fine parameters adjustment. By using the driving wheel speed error of the actual mobile robot as the loss function in using the genetic algorithm, the best PID speed controller of mobile robot can be found during the online training.
The trajectory control of the Mecanum wheeled mobile robot is performed by using a sequential state machine and the inverse differential kinematics. The planned path is followed by trapezoidal acceleration and deceleration profile, and the control points of the trajectory are tracking in a sequence to realize the trajectory control.

摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.3 論文大綱 3 第2章 移動機器人系統架構與元件 4 2.1 系統簡介 4 2.2 硬體配置 4 2.2.1 平台懸吊系統 6 2.2.2 直流馬達 7 2.3 機器人元件 8 2.3.1 主控制器 Raspberry Pi 8 2.3.2 通訊埠 UART 9 2.3.3 驅動輪PID控制器 DE0-nano 11 2.3.4 驅動器 L298P 14 2.3.5 九軸指向感測器 BNO-055 15 第3章 移動機器人軌跡控制 16 3.1 麥克納姆輪移動機器人之微分運動學分析 16 3.2 移動機器人運動學軌跡控制流程 19 第4章 基因演算法 22 4.1 基因演算法之運算流程 22 4.2 染色體選擇 25 4.3 染色體交叉 26 4.4 染色體變異 26 4.5 適應性函數 27 第5章 實驗結果與討論 28 5.1 設計工具1:驅動輪之系統模擬器 29 5.1.1 驅動輪轉移函數 29 5.1.2 驅動輪之系統模擬器設計 30 5.2 設計工具2:移動機器人之軌跡量測系統 32 5.2.1 顏色辨識流程與定位 33 5.2.2 軌跡誤差分析 34 5.2.3 量測誤差分析 36 5.3 驅動輪PID速度控制器之離線學習 37 5.3.1 離線學習訓練流程 37 5.3.2 離線學習參數設定 39 5.3.3 離線學習結果分析 40 5.4 驅動輪PID速度控制器之線上學習 42 5.4.1 線上學習訓練流程 42 5.4.2 線上學習之相同控制增益粗調 44 5.4.3 線上學習之獨立控制增益微調 49 第6章 結論與建議 53 6.1 結論 53 6.2 建議 54 參考文獻 55

[1] J. Park, S. Kim, J. Kim and S. Kim, "Driving control of mobile robot with Mecanum wheel using fuzzy inference system," ICCAS 2010, Gyeonggi-do, Korea (South), 2010, pp. 2519-2523, doi: 10.1109/ICCAS.2010.5670241.
[2] X. Lu, X. Zhang, G. Zhang and S. Jia, "Design of adaptive aliding mode controller for four-Mecanum wheel mobile robot," 2018 37th Chinese Control Conference (CCC), Wuhan, China, 2018, pp. 3983-3987, doi: 10.23919/ChiCC.2018.8483388.
[3] J. S. Keek, S. L. Loh and S. H. Chong, "Comprehensive development and control of a path-trackable Mecanum-wheeled robot," in IEEE Access, vol. 7, pp. 18368-18381, 2019, doi: 10.1109/ACCESS.2019.2897013.
[4] Fahmizal and C. Kuo, "Trajectory and heading tracking of a mecanum wheeled robot using fuzzy logic control," 2016 International Conference on Instrumentation, Control and Automation (ICA), Bandung, Indonesia, 2016, pp. 54-59, doi: 10.1109/ICA.2016.7811475.
[5] G. Lin and G. Liu, "Tuning PID controller using adaptive genetic algorithms," 2010 5th International Conference on Computer Science & Education, Hefei, China, 2010, pp. 519-523, doi: 10.1109/ICCSE.2010.5593559.
[6] M. Korkmaz, Ö. Aydoğdu and H. Doğan, "Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller," 2012 International Symposium on Innovations in Intelligent Systems and Applications, Trabzon, Turkey, 2012, pp. 1-5, doi: 10.1109/INISTA.2012.6246935.
[7] R. Wen and M. Tong, "Mecanum wheels with Astar algorithm and fuzzy PID algorithm based on genetic algorithm," 2017 International Conference on Robotics and Automation Sciences (ICRAS), Hong Kong, China, 2017, pp. 114-118, doi: 10.1109/ICRAS.2017.8071927.
[8] C. Vlachos, J. T. Evans and D. Williams, "PI controller tuning for multivariable processes using genetic algorithms," Second International Conference On Genetic Algorithms In Engineering Systems: Innovations And Applications, 1997, pp. 43-49, doi: 10.1049/cp:19971153.
[9] X. Meng and B. Song, "Fast genetic algorithms used for PID parameter optimization," 2007 IEEE International Conference on Automation and Logistics, 2007, pp. 2144-2148, doi: 10.1109/ICAL.2007.4338930.
[10] J. Juang, M. Huang and W. Liu, "PID control using presearched genetic algorithms for a MIMO system," in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 5, pp. 716-727, Sept. 2008, doi: 10.1109/TSMCC.2008.923890.
[11] R. A. Krohling and J. P. Rey, "Design of optimal disturbance rejection PID controllers using genetic algorithms," in IEEE Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 78-82, Feb 2001, doi: 10.1109/4235.910467.
[12] J. Han, "From PID to active disturbance rejection control," in IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, March 2009, doi: 10.1109/TIE.2008.2011621.
[13] Kiam Heong Ang, G. Chong and Yun Li, "PID control system analysis, design, and technology," in IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559-576, July 2005, doi: 10.1109/TCST.2005.847331.
[14] J. J. Grefenstette, "Optimization of control parameters for genetic algorithms," in IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 122-128, Jan. 1986, doi: 10.1109/TSMC.1986.289288.
[15] M. Srinivas and L. M. Patnaik, "Adaptive probabilities of crossover and mutation in genetic algorithms," in IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 4, pp. 656-667, April 1994, doi: 10.1109/21.286385.
[16] G. Rudolph, "Convergence analysis of canonical genetic algorithms," in IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 96-101, Jan. 1994, doi: 10.1109/72.265964.
[17] 施慶隆、李文猶,機電整合與控制-多軸運動設計與應用,第三版,全華書局股份有限公司,2015。

無法下載圖示 全文公開日期 2024/07/06 (校內網路)
全文公開日期 2024/07/06 (校外網路)
全文公開日期 2026/07/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE