簡易檢索 / 詳目顯示

研究生: 黃俊琦
Chun-chi Huang
論文名稱: 近端股骨骨折鎖定內釘遲滯螺絲之多目標最佳化設計與生物力學測試
Multi-objective Optimization Design and Biomechanical Tests of Lag Screws for Proximal Femoral Interlocking Nails
指導教授: 趙振綱
Ching-kong Chao
林晉
Jinn Lin
口試委員: 徐慶琪
Ching-chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 115
中文關鍵詞: 雙螺絲骨釘遲滯螺絲有限元素分析類神經網路遺傳演算法生物力學測試
外文關鍵詞: double screw nail, lag screw, finite element analysis, artificial neural network, genetic algorithms, biomechanical tests
相關次數: 點閱:385下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎖定式骨髓內釘已經被廣泛利用於治療股骨近端骨折,但仍然有遲滯螺絲斷裂與鬆脫的失效模式。因此,必須進行花費額外金錢與時間且造成病人二次傷害的二次手術。本研究的目的在於改良雙螺絲骨釘遲滯螺絲的設計,使其可以同時具有彎曲強度與拉出強度。
    本研究首先利用田口L25直交表定義遲滯螺絲設計區間,並使用有限元素分析求解彎曲模型與拉出模型。接著透過類神經網路建立預測彎曲目標與拉出目標的數學模型供給遺傳演算法尋求遲滯螺絲最佳化設計,並以生物力學測試驗證。
    本研究中所得的最佳化遲滯螺絲設計因子為圓錐起始位置0 mm、內徑3.3 mm、近端根部半徑0.22 mm、螺紋節距3.3 mm、近端半角5°與螺紋厚度0.2 mm。有限元素分析彎曲模型最大張應力結果由高至低為市售遲滯螺絲、L23遲滯螺絲、L16遲滯螺絲、最佳化遲滯螺絲與L5遲滯螺絲(455.36-1312.10 MPa);拉出模型總反作用力結果由高至低為最佳化遲滯螺絲、市售遲滯螺絲、L16遲滯螺絲、L23遲滯螺絲與L5遲滯螺絲(23.61-38.14 N)。生物力學測試部份,彎曲測試降伏負載結果由高至低為L5遲滯螺絲、最佳化遲滯螺絲、L16遲滯螺絲、L23遲滯螺絲與市售遲滯螺絲(454.08-605.01 N);疲勞測試疲勞壽命結果由高至低為最佳化遲滯螺絲、L5遲滯螺絲L16遲滯螺絲、L23遲滯螺絲與市售遲滯螺絲(80339-1000000 cycles);拉出測試在0.32與0.16 g/cm3人造假骨密度中拉出強度結果由高至低為最佳化遲滯螺絲、市售遲滯螺絲、L16遲滯螺絲、L23遲滯螺絲與L5遲滯螺絲(964.31-1635.36 N)以及L16遲滯螺絲、最佳化遲滯螺絲、市售遲滯螺絲、L23遲滯螺絲與L5遲滯螺絲(299.09-661.12 N)。彎曲測試降伏負載與彎曲模型總應變能結果相關係數為-1.00,疲勞測試疲勞壽命對數值與彎曲模型最大張應力結果相關係數為-0.91,拉出測試拉出強度與拉出模型總反作用力結果相關係數在0.32與0.16 g/cm3人造假骨密度中分別為0.99與0.93。
    本研究中,對於彎曲強度具有影響力的設計因子為圓錐起始位置和內徑,而對於拉出強度具有影響力的設計因子為內徑、近端根部半徑和螺紋節距。由類神經網路以及遺傳演算法可知,最佳化遲滯螺絲能夠同時保有95%的彎曲強度與拉出強度。


    Interlocking intramedullary nail had been widely used in proximal femoral fractures, but it still threatened by lag screw failures, including breakage and loosening. It is necessary to perform the second surgery when implant failure occurred. The second surgery costs additional time and money, and it also causes the additional injury to the patients. The purpose of this study is to improve the lag screw design, and to find an optimal design which can maintain bending and pullout strength simultaneously.
    This study used Taguchi L25 orthogonal array to define the design space of lag screws, and used finite element analysis (FEA) to solve the bending and pullout models. The results of FEA were used to construct artificial neural network (ANN). We chose the best ANN model to perform multi-objective genetic algorithms (GA), and determined the optimal design of lag screw. Finally, we chose five different lag screw designs (L5 screw, L16 screw, L23 screw, commercial screw, and optimal screw) to perform biomechanical tests, and prove the optimal design which can maintain bending and pullout strength simultaneously.
    In this study, we defined the optimal design from GA results, the six factors were initial position of conical angle 29 mm, inner diameter 3.3 mm, proximal root radius 0.22 mm, pitch 3.3 mm, proximal half angle 5°, thread width 0.2 mm. From the FEA results, the maximum tensile stress of bending models descended as commercial screw, L23 screw, L16 screw, optimal screw, and L5 screw (455.36-1312.10 MPa); and total reaction force of pullout models descended as optimal screw, commercial screw, L16 screw, L23 screw, and L5 screw (23.61-38.14 N). Further, from biomechanical tests, the yielding load descended as L5 screw, optimal screw, L16 screw, L23 screw, and commercial screw (454.08-605.01 N); the fatigue life descended as optimal screw, L5 screw, L16 screw, L23 screw, and commercial screw (80339-1000000 cycles); the pullout strength descended as optimal screw, commercial screw, L16 screw, L23 screw, and L5 screw (964.31-1635.36 N) and L16 screw, optimal screw, commercial screw, L23 screw, and L5 screw (299.09-661.12 N) in 0.32 and 0.16 g/cm3 Sawbone densities. The correlation coefficient between the total strain energy of bending models and the yielding load of bending tests was -1.00; and between the maximum tensile stress of bending models and logarithmic fatigue life of fatigue tests was -0.91; and between the total reaction force of pullout models and pullout strength of pullout tests were 0.99 and 0.93 in 0.32 and 0.16 g/cm3 Sawbone densities .
    In this study, the influential factors were initial position of conical angle and inner diameter in bending cases; inner diameter, proximal root radius and pitch in pullout cases. From the results of ANN, GA and biomechanical tests, it showed the optimal lag screw could maintain 95% of maximal bending and pullout strength simultaneously.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 符號索引 VI 圖表索引 VIII 第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 臨床背景與器材簡介 2 1.2.1 股骨與股骨近端骨折 2 1.2.2 常見骨折內固定器 4 1.2.3 雙螺絲骨釘與其臨床失效模式 7 1.3 文獻回顧 11 1.3.1 臨床背景 11 1.3.2 有限元素分析 11 1.3.3 類神經網路與遺傳演算法 12 1.3.4 彎曲強度與疲勞壽命 13 1.3.5 拉出強度 13 1.3.6 生物力學測試方法 14 1.4 本文架構 15 第二章 材料與方法 16 2.1 有限元素分析 18 2.1.1 彎曲模型 23 2.1.2 拉出模型 29 2.2 類神經網路 34 2.3 遺傳演算法 39 2.4 生物力學測試 42 2.4.1 彎曲測試 44 2.4.2 疲勞測試 45 2.4.3 拉出測試 46 第三章 結果 48 3.1 有限元素分析結果 48 3.2 類神經網路結果 54 3.3 遺傳演算法結果 58 3.4 生物力學測試結果 62 3.4.1 彎曲測試結果 62 3.4.2 疲勞測試結果 73 3.4.3 拉出測試結果 88 第四章 討論 103 第五章 結論與未來展望 110 5.1 結論 110 5.2 未來展望 111 參考文獻 112 作者簡介 115

    [1]楊榮森,臨床骨折學,合記圖書出版社,臺北市 (1998)。
    [2]陳明庭、曾國藩,臨床大體解剖學,國立台灣大學醫學院,臺北市 (2000)。
    [3]侯勝茂、林晉,鎖定式骨髓內釘之基礎科學與臨床應用,合記出版社,臺北市(2004)。
    [4]Lin, J., “Encouraging Results of Treating Femoral Trochanteric Fractures With Specially Designed Double-Screw Nails,” The Journal of Trauma, Vol. 63, pp. 866-874 (2007).
    [5]Chatzistergosa, P. E., Magnissalis, E. A., and Kourkoulis, S. K., “A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model,” Medical Engineering & Physics, Vol. 32, pp. 145-154 (2010).
    [6]Efstathopoulos, N., Nikolaou, V. S., Xypnitos, F. N., Korres, D., Lazarettos, I., Panousis, K., Kasselouris, E. N., Venetsanos, D. T., and Provatidis, C. G., “Investigation on the distal screw of a trochanteric intramedullary implant (Fi-nail) using a simplified finite element model,” Injury, Vol. 41, pp. 259-265 (2010).
    [7] Hsu, C. C., Chao, C. K., Wang, J. L., and Lin, J., “Multiobjective Optimization of Tibial Locking Screw Design Using a Genetic Algorithm: Evaluation of Mechanical Performance,” Journal of Orthopaedic Research, Vol. 24, pp. 908-916 (2006).
    [8]Chao, C. K., Lin, J., Putra, S. T., and Hsu, C. C., “A Neurogenetic Approach to a Multiobjective Design Optimization of Spinal Pedicle Screws,” Journal of Biomechanical Engineering, Vol. 132, pp. 091006-1-091006-6 (2010).
    [9]Abu Qdais, H., Bani Hani, K., and Shatnawi, N., “Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm,” Resources, Conservation and Recycling, Vol. 54, pp. 359-363 (2010).
    [10]Sun, Y., Zeng, W., Ma, X., Xu, B., Liang, X., and Zhang, J. “A hybrid approach for processing parameters optimization of Ti-22Al-25Nb alloy during hot deformation using artificial neural network and genetic algorithm,” Intermetallics, Vol. 19, pp. 1014-1019 (2011).
    [11]Chao, C. K., Hsu, C. C., Wang, J. L., and Lin, J., “Increasing bending strength of tibial locking screws: Mechanical tests and finite element analyses,” Clinical Biomechanics, Vol. 22, pp. 59-66 (2007).
    [12]Griffin, L. V., Harris, R. M., and Zubak, J. J., “Fatigue strength of common tibial intramedullary nail distal locking screws,” Journal of Orthopaedic Surgery and Research, Vol. 4, pp. 11-17 (2009).
    [13]Hsu, C. C., Chao, C. K., Wang, J. L., Hou, S. M., Tsai, Y. T., and Lin, J., “Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses,” Journal of Orthopaedic Research, Vol. 23, pp. 788-794 (2005).
    [14]Kim, Y. Y., Choi, W. S., and Rhyu, K. W., “Assessment of pedicle screw pullout strength based on various screw designs and bone densities—an ex vivo biomechanical study,” The Spine Journal, Vol. 12, pp. 164-168 (2012).
    [15]Hsu, C. C., Yongyut, A., Chao, C. K., and Lin, J., “Notch sensitivity of titanium causing contradictory effects on locked nails and screws,” Medical Engineering & Physics, Vol. 32, pp. 454-460 (2010).
    [16]Zhang, Y., Tian, L., Yan, Y., Sang, H., Ma, Z., Jie, Z., Lei, W., and Wu, Z., “Biomechanical evaluation of the expansive cannulated screw for fixation of femoral neck fractures,” Injury, Vol. 42, pp. 1372-1376 (2011).
    [17]葉駿達,「鎖定式骨髓內釘之遲滯螺絲多目標最佳化設計」,碩士論文,國立臺灣科技大學,臺北市 (2011)。
    [18]蔡國忠,ANSYS/Workbench 有限元素分析與工程應用,知城圖書,臺北縣 (2008)。
    [19]蘇木春、張孝德,機器學習 類神經網路、模糊系統以及基因演算法則,全華圖書股份有限公司,臺北縣 (2007)。
    [20]顧力栩、沈晉惠,人工智慧:智慧型系統導論,全華圖書股份有限公司,臺北縣 (2010)。
    [21]Liu, T., Zheng, W. J., Li, C. Q., Liu, G. D., and Zhou, Y., “Design and biomechanical study of a modified pedicle screw,” Chinese Journal of Traumatology, Vol. 13, pp. 222-228 (2010).
    [22]Steinberg, E. L., Blumberg, N., and Dekel, S., “The fixion proximal femur nailing system: biomechanical properties of the nail and a cadaveric study,” Journal of Biomechanics, Vol. 38, pp. 63-68 (2005).
    [23]張傑富,「腰椎椎弓足螺絲之多目標最佳化設計:有限元素分析與生物力學測試」,碩士論文,國立臺灣科技大學,臺北市 (2010)。
    [24]徐慶琪,「骨螺絲之結構設計與生物力學分析」,博士論文,國立臺灣科技大學,臺北市 (2005)。
    [25] Hansen, M., Le, L., Wertheimer, S., Meyer, E., and Haut, R., “Syndesmosis Fixation: Analysis of Shear Stress via Axial Load on 3.5-mm and 4.5- mm Quadricortical Syndesmotic Screws,” Journal of Foot & Ankle Surgery, Vol. 45, pp. 65-69 (2006).
    [26]Horn, J., Linke, B., Hontzsch, D., Gueorguiev, B., and Schwieger, K., “Angle stable interlocking screws improve construct stability of intramedullary nailing of distal tibia fractures: A biomechanical study,” Injury, Vol. 40, pp. 767-771 (2009).
    [27]楊裕圍,「不鏽鋼與鈦合金製作之鎖定式骨髓內釘與鎖定螺絲之機械性質之比較」,碩士論文,國立臺灣科技大學,臺北市 (2007)。

    QR CODE