簡易檢索 / 詳目顯示

研究生: 巫振穠
Jhen-Nong Wu
論文名稱: 用於超導量子位元驅動之6-GHz次取樣鎖相迴路
6-GHz Sub-sampling Phase-locked Loop for Transmon Driver
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 62
中文關鍵詞: 量子電腦毫米波積體電路次取樣鎖相迴路
外文關鍵詞: patterned ground shield, Transmon
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出6 GHz次取樣鎖相迴路(SSPLL),可提供驅動Transmon量子電腦中Qubit的低雜訊微波信號。SSPLL使用TSMC90奈米CMOS技術實現。VCO涵蓋6.155 GHz到6.279 GHz,相位雜訊在1 MHz的偏移頻率下為-87.81 dBc/Hz,在10 MHz的偏移頻率下為-115.11 dBc/Hz。SSPLL的迴路頻寬為2 MHz,在頻帶內的相位雜訊在100 kHz的偏移頻率下為-112.44 dBc/Hz,在頻帶外的相位雜訊在10 MHz的偏移頻率下為-135 dBc/Hz。SSPLL的頻率雜訊是由2.5 kHz到 2.5 MHz的相位雜訊進行積分估算的結果,在室溫300 °K的情況下實現了3.6 kHzrms的頻率雜訊。SSPLL電路的整體功耗為20.1 mW,根據後模擬結果鎖定時間為1.5 μs,晶片面積為1.697 mm2。


    A 6 GHz sub-sampling phase-locked loop (SSPLL) that delivers low-phase-noise microwave signals for qubit control in Transmon quantum computers is presented. The SSPLL is implemented using TSMC 90-nm CMOS technology. The VCO covers the frequency range from 6.155 GHz to 6.279 GHz and achieves the phase noises of -87.81 dBc/Hz at 1 MHz frequency offset and -115.11 dBc/Hz at 10 MHz frequency offset. Consuming the power of 20.1 mW and the chip area of 1.697 〖"mm" 〗^"2" , the SSPLL with the loop bandwidth of 2 MHz achieves the in-band phase noise of -122 dBc/Hz at 100 KHz frequency offset and the out-band phase noise is -135 dBc/Hz at 10 MHz frequency offset. The frequency noise of the SSPLL is estimated by integrating the phase noise from 2.5 kHz to 2.5 MHz for the quantum gate operation applied with the microwave pluse duration of 20 ns and Rabi frequency of 1 MHz. The SSPLL achieves the frequency noise of 3.6 kHzrms at 300 °K.

    摘要 II Abstract V 誌謝 VI Contents VIII List of Figures X List of Tables XI Chapter1 Introduction 1 1.1 Motivation 1 1.2 Organization 3 Chapter2 Investigation on CMOS On-Chip Inductors Using Various Patterned Ground/Floating Shield Techniques 4 2.1 Introduction of Patterned Ground Shield 4 2.2 Patterned Ground Shield/ Patterned Floating Shield Structrue 5 2.2.1 X-type PGS 5 2.2.2 Outer-rounding PGS 6 2.2.3 Horseshoe floating shield pattern 7 2.2.4 Hilbert PGS 8 2.2.5 Dual-layer floating shield pattern 9 2.3 Experiment results and Discussions 11 Chapter3 Circuit Structure and Design Flow of Low Phase Noise Sub-sampling PLL for Quantum Computing 13 3.1 The Basic structure of Sub-sampling PLL 13 3.2 Circuit Design 18 3.2.1 Sub-sampling phase detector and sub-sampling charge pump 18 3.2.2 Voltage-Controlled Oscillator 23 3.3 Noise analysis of SSPLL architecture and system simulation result 31 Chapter4 Measurement results 35 4.1 Introduction 35 4.2 VCO measurement 35 4.2.1 VCO measurement 35 4.2.2 VCO measurement results 36 4.3 Sub-sampling PLL measurement 39 4.3.1 Sub-sampling PLL measurement 39 4.3.2 Sub-sampling PLL measurement results 40 4.4 Conclusion 41 Chapter5 Conclusion 45 Reference 48 Appendix A 51

    [1] B. Patra et al., "Cryo-CMOS Circuits and Systems for Quantum Computing Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan. 2018.
    [2] J. P. G. Van Dijk et al., "A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons," in IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp. 2930-2946, Nov. 2020.
    [3] J. P. G. van Dijk, B. Patra, S. Pellerano, E. Charbon, F. Sebastiano and M. Babaie, "Designing a DDS-Based SoC for High-Fidelity Multi-Qubit Control," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 5380-5393, Dec. 2020, doi: 10.1109/TCSI.2020.3019413.
    [4] J. C. Bardin, D. H. Slichter and D. J. Reilly, "Microwaves in Quantum Computing," in IEEE Journal of Microwaves, vol. 1, no. 1, pp. 403-427, Jan. 2021, doi: 10.1109/JMW.2020.3034071.
    [5] C. P. Yue and S. S. Wong, "On-chip spiral inductors with patterned ground shields for Si-based RF ICs," in IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
    [6] R. Svitek, A. S. Klein, M. Clifford and S. Raman, "Development of scalable models for patterned-ground-shield inductors in SiGe BiCMOS technology," Digest of Papers. 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2004.
    [7] T. S. D. Cheung and J. R. Long, "Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits," in IEEE Journal of Solid-State Circuits, May 2006.
    [8] Y. Song and B. Han, "Research on the design techniques of Hilbert frad pattern ground shield," 2017 International Applied Computational Electromagnetics Society Symposium (ACES).
    [9] C. Lim, H. Ramiah, J. Yin, P. Mak and R. P. Martins, "A high-Q spiral inductor with dual-layer patterned floating shield in a class-B VCO achieving a 190.5-dBc/Hz FoM," 2016 IEEE International Symposium on Circuits and Systems (ISCAS).
    [10] J. Groszkowski, "The Interdependence of Frequency Variation and Harmonic Content, and the Problem of Constant-Frequency Oscillators," in Proceedings of the Institute of Radio Engineers, vol. 21, no. 7, pp. 958-981, July 1933, doi: 10.1109/JRPROC.1933.227821.
    [11] M. Shahmohammadi, M. Babaie and R. B. Staszewski, "A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, Nov. 2016, doi: 10.1109/JSSC.2016.2602214.
    [12] A. Elkholy, M. Talegaonkar, T. Anand and P. K. Hanumolu, "10.7 A 6.75-to-8.25GHz 2.25mW 190fsrms integrated-jitter PVT-insensitive injection-locked clock multiplier using all-digital continuous frequency-tracking loop in 65nm CMOS," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1-3, doi: 10.1109/ISSCC.2015.7062989.
    [13] D. Liao, F. F. Dai, B. Nauta and E. A. M. Klumperink, "A 2.4-GHz 16-Phase Sub-Sampling Fractional-N PLL With Robust Soft Loop Switching," in IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 715-727, March 2018, doi: 10.1109/JSSC.2018.2791486.
    [14] A. Sharkia, S. Mirabbasi and S. Shekhar, "A Type-I Sub-Sampling PLL With a 100*100 um^2 Footprint and −255-dB FOM," in IEEE Journal of Solid-State Circuits, vol.53, no.12, pp.3553-3564,Dec.2018,doi:10.1109 /JSSC.2018.2874013.
    [15] J. Kim et al., "An Ultra-Low-Jitter, mmW-Band Frequency Synthesizer Based on Digital Subsampling PLL Using Optimally Spaced Voltage Comparators," in IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3466-3477, Dec. 2019, doi: 10.1109/JSSC.2019.2936765.
    [16] D. Liao, Y. Zhang, F. F. Dai, Z. Chen and Y. Wang, "An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO," in IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 536-546, March 2020, doi: 10.1109/JSSC.2019.2959513.
    [17] S. -Y. Shu, C. -H. Lin and C. -Y. Yang, "A 5-GHz Sub-Sampling Phase-Locked Loop With Pulse-Width to Current Conversion," 2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2022, pp. 1-4, doi: 10.1109/VLSI-DAT54769.2022.9768063.
    [18] D. -H. Yoon et al., "A 3.2-GHz 178-fsrms Jitter Subsampling PLL/DLL-Based Injection-Locked Clock Multiplier," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 915-925, July 2022, doi: 10.1109/TVLSI.2022.3169636.
    [19] J. -N. Wu, Y. -M. Chang, Z. -Y. Shen and H. -C. Chen, "Investigation on CMOS on-Chip Inductors Using Various Patterned Ground/Floating Shield Techniques," 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), 2021, pp. 113-116, doi: 10.1109/ICEIB53692.2021. 9686404.

    無法下載圖示 全文公開日期 2025/01/31 (校內網路)
    全文公開日期 2025/01/31 (校外網路)
    全文公開日期 2025/01/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE