簡易檢索 / 詳目顯示

研究生: 周郁桀
Yu-Jie Chou
論文名稱: 應用於量子運算低雜訊次取樣鎖相迴路
Low Phase Noise Sub-sampling Phase-locked Loop for Quantum Computing
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 姚嘉瑜
Chia-Yu Yao
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 88
中文關鍵詞: 量子電腦Ku頻段毫米波積體電路衛星通訊次取樣鎖相迴路
外文關鍵詞: MMIC, statellite communication
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用TSMC 90奈米CMOS技術實現應用於量子運算之單晶片低雜訊次取樣鎖相迴路,電壓控制振盪器的可操作頻率範圍為18.08 GHz到18.38GHz,相位雜訊在1 MHz的偏移頻率下為-104.7 dBc/Hz ~ -105.6 dBc/Hz, 此電路在頻帶內之相位雜訊在100 kHz的偏移頻率下為-93.5 dBc/Hz,頻帶外之相位雜訊在10 MHz的偏移頻率下約為 -123.5 dBc/Hz。在電路完成鎖定後,此時電路的功耗為68.4 mW;根據模擬結果,系統的鎖定時間約為3 μs,晶片面積為1.9mm2。


    A 18.3 GHz sub-sampling PLL is implemented using TSMC 90-nm CMOS technology to generate microwave signal for quantum computers. The on-chip VCO achieves the tuning range from 18.08 GHz to 18.39 GHz, and exhibits the phase noise of -104.7 ~ -105.6 dBc/Hz at 1 MHz frequency offset, from the 18.08 GHz to 18.39 GHz carriers. Consuming the power of 64.8 mW and the chip area of 1.9 mm^2, the sub-sampling PLL delivers the 18.3 GHz signal with the in-band phase noise of -93.5 dBc/Hz and the out-band phase noise is -123.5 dBc/Hz at 10 MHz frequency offset. The locking time is 3 μs.

    摘要 IV Abstract V 誌謝 VI Contents VIII List of Figures X List of Tables XII Chapter1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter2 Circuit Structure and Design Flow of Low Phase Noise Sub-sampling PLL for Quantum Computing 3 2.1 The Basic structure of Sub-sampling PLL 3 2.2 Synthesizer Architecture 6 2.2.1 Phase Frequency Detector (PFD) 6 2.2.2 Sub-sampling Phase Detector (SSPD) and Sub-sampling Charge Pump (SSCP) 8 2.2.3 In-band Phase Noise Consideration 14 2.2.4 Pulser, Gm and AVCO 16 2.2.5 Loop Filter (LPF) and Charge Pump (CP) 18 2.2.6 Dead Zone Creator Design 26 2.2.7 Voltage Controlled Oscillator (VCO) 28 2.2.8 Truly Programmable Frequency Divider 33 2.3 The Consideration of Sub-sampling PLL 35 2.3.1 Phase Noise 35 2.3.2 Spurs 37 2.3.3 Locking time 37 2.4 Noise analysis of synthesizer architecture and system simulation result 38 Chapter3 Measurement results 40 3.1 Introduction 40 3.2 VCO measurement 40 3.2.1 VCO measurement 41 3.2.2 VCO measurement results 41 3.3 Sub-sampling PLL measurement 54 3.3.1 Sub-sampling PLL measurement 54 3.3.2 Sub-sampling PLL measurement results 54 3.4 Conclusion 60 Chapter4 Conclusion 64 Reference 65 Appendix A 69 Appendix B 73

    [1] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H. J. Pohl, T. Schenkel, M. L. W. Thewalt, K. M. Itoh, and S. A. Lyon, “Electron spin coherence exceeding seconds in high-purity silicon,” Nat. Mater. 11, 143147 (2012).
    [2] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “A two-qubit logic gate in silicon,” Nature 526, 410414 (2015).
    [3] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and S. De Franceschi, “A CMOS silicon spin qubit,” Nat. Commun. 7, 13575 (2016).
    [4] A programmable two-qubit quantum processor in silicon
    [5] B. Patra et al., "Cryo-CMOS Circuits and Systems for Quantum Computing Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan. 2018
    [6] X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, "A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N^2 ," in IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
    [7] W. El-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar, P. Mousavi and M. Hossain, "A 28-GHz Quadrature Fractional-N Frequency Synthesizer for 5G Transceivers With Less Than 100-fs Jitter Based on Cascaded PLL Architecture," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 2, pp. 396-413, Feb. 2017.
    [8] Q. Shi, K. Bunsen, N. Markulic and J. Craninckx, "A Self-Calibrated 16-GHz Subsampling-PLL-Based Fast-Chirp FMCW Modulator With 1.5-GHz Bandwidth," in IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3503-3512, Dec. 2019.
    [9] C. Hsu, K. Tripurari, S. Yu and P. R. Kinget, "A Sub-Sampling-Assisted Phase-Frequency Detector for Low-Noise PLLs With Robust Operation Under Supply Interference," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 90-99, Jan. 2015
    [10] X. Xu, C. Chen, T. Sugiura and T. Yoshimasu, "18-GHz band low-power LC VCO IC using LC bias circuit in 56-nm SOI CMOS," 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017, pp. 938-941
    [11] P. Kumar, D. Stajic, E. Böhme, E. N. Isa and L. Maurer, "A 500 mV, 4.5 mW, 16 GHz VCO with 33.3% FTR, designed for 5G applications," 2020 IEEE Nordic Circuits and Systems Conference (NorCAS), 2020, pp. 1-4
    [12] Y. -F. Kuo, Y. -P. Wu and Y. -C. Liu, "A Ku-Band Voltage-Controlled Oscillator Equipped With a Compact Enhanced Linearity Tuning Converter," in IEEE Microwave and Wireless Components Letters
    [13] I. Mansour, M. Aboualalaa, A. Allam, A. B. Abdel-Rahman, M. Abo-Zahhad and R. K. Pokharel, "Dual Band VCO Based on a High-Quality Factor Switched Interdigital Resonator for the Ku Band Using 180-nm CMOS Technology
    [14] T. N. Nguyen and J. Lee, "Ultralow-Power Ku-Band Dual-Feedback Armstrong VCO With a Wide Tuning Range," in IEEE Transactions on Circuits and Systems II: Express Briefs
    [15] Z. Yang, Y. Chen, S. Yang, P. Mak and R. P. Martins, "16.8 A 25.4-to-29.5GHz 10.2mW Isolated Sub-Sampling PLL Achieving -252.9dB Jitter-Power FoM and -63dBc Reference Spur," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 270-272.
    [16] T. Siriburanon et al., "A Low-Power Low-Noise mm-Wave Subsampling PLL Using Dual-Step-Mixing ILFD and Tail-Coupling Quadrature Injection-Locked Oscillator for IEEE 802.11ad," in IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1246-1260, May 2016
    [17] T. H. Lin, C. L. Ti and Y. H. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 877-885, May 2009.
    [18] Q. Shi, K. Bunsen, N. Markulic and J. Craninckx, "A Self-Calibrated 16-GHz Subsampling-PLL-Based Fast-Chirp FMCW Modulator With 1.5-GHz Bandwidth," in IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3503-3512, Dec. 2019.
    [19] D. Liao, R. Wang and F. F. Dai, "A low-noise inductor-less fractional-N sub-sampling PLL with multi-ring oscillator," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 108-111
    [20] Y. C. Qian, Y. Chao and S. Liu, "A Sub-Sampling PLL with Robust Operation under Supply Interference and Short Re-Locking Time," 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, pp. 95-98
    [21] Y. -Y. Lin, F. -t. Chen and W. -Z. Chen, "A Millimeter-Wave Frequency Synthesizer for 60 GHz Wireless Interconnect," 2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2020
    [22] L. Chen, C. Li, H. Zhu, W. Che and Q. Xue, "A PLL Synthesizer for 5G mmW Transceiver," 2020 IEEE MTT-S International Wireless Symposium (IWS), 2020, pp. 1-3
    [23] V. Aggarwal and S. Aniruddhan, "A 27-29GHz Integer-N PLL with Quadrature phases for 5G applications," 2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), 2019, pp. 1-3
    [24] M. Hekmat, F. Aryanfar, J. Wei, V. Gadde and R. Navid, "A 25 GHz Fast-Lock Digital LC PLL With Multiphase Output Using a Magnetically-Coupled Loop of Oscillators," in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 490-502, Feb. 2015

    無法下載圖示 全文公開日期 2031/09/29 (校內網路)
    全文公開日期 2031/09/29 (校外網路)
    全文公開日期 2031/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE