簡易檢索 / 詳目顯示

研究生: 張晏銘
Yan-Ming Chang
論文名稱: 用於自旋量子位元驅動之18-GHz次取樣鎖相迴路
18-GHz Sub-sampling Phase-locked Loop for Spin qubit Driver
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 68
中文關鍵詞: 量子電腦自旋量子位元次取樣鎖相迴路
外文關鍵詞: quantum computers, spin qubit, sub sampling PLL
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文採用
    TSMC 90 奈米 CMOS 技術 設計與 實現應用於 自旋 量子 位元 運算
    之次取樣鎖相迴路 。作為量子電腦控制器的關鍵電路,此 電路 包含了次取樣相位
    檢測器、次取樣電流泵、迴路濾波器及電壓控制振盪器。此電壓控制振盪器 可操
    作頻率範圍為 18. 38 GHz 到 18. 5 7 GHz ,相位雜訊在 1 MHz 的偏移頻率下為
    10 3.55 dBc/Hz ,功耗為 2.3 mW 。此次取樣鎖相迴路 可 提供 18.5 GHz 的信號,頻
    帶內之相位雜訊為 114.34 dBc/Hz ,頻帶外之相位雜訊 在 10 MHz 的頻率偏移下
    為 125.42 dBc/ H z 。此晶片功 率消耗 為 20.61 mW ,面積為 1.01 mm 2 。


    A 18.5 GHz sub
    sampling phase locked loop (SSPLL) is designed and
    implemented using TSMC 90 nm CMOS technology for the application of
    semiconductor spin qubit quantu m computers. As the key building block of the
    controller of the quantum computer, this SSPLL contains the sub sampling phase
    detector ( SSPD), sub sampling charge pump ( SSCP), loop filter and the voltage control
    oscillator(VCO). The VCO covers the output tuni ng range from 18.38 18.57 GHz and
    achieves the phase noise of 103.55 dBc/Hz at 1 MHz offset by consuming the power
    of 2.3 mW.
    The SSPLL is adopted to develop the 18.5 GHz signal with the in
    band phase noise
    of 114.34 dBc/Hz and the out band phase noise of 125.42 dBc/Hz at 10 MH z offset
    at 300 K by consuming the power of 20.61 mW and the chip area of 1.01 mm 2 for spin
    qubit quantum computing controller system.

    摘要 IV Abstract V 誌謝 VI Contents VIII List of Figures IX List of Tables XI Chapter1 Introduction 1 1.1 Motivation 1 1.2 Organization 4 Chapter2 System Structure 5 2.1 The Basic structure of PLL 5 2.2 The Consideration of Sub-sampling PLL 6 2.2.1 Phase Noise 6 2.2.2 Reference Spurs 8 Chapter3 Circuit Design 9 3.1 Reference buffer 9 3.2 Sub-sampling phase detector (SSPD) and Sub-sampling charge pump (SSCP) 10 3.3 In-band phase noise consideration 17 3.4 Pulser , Gm and Avco 19 3.5 Voltage-control-oscillator (VCO) 20 3.6 Loop filter RC 28 3.7 Noise analysis and system simulation result 30 Chapter4 Experimental results 33 4.1 VCO measurement 33 4.1.1 VCO measurement environment 33 4.1.2 VCO measurement result 34 4.2 Sub-sampling PLL measurement 35 4.2.1 Crystal oscillator measurement 35 4.2.2 Sub-sampling PLL measurement environment 36 4.2.3 Sub-sampling PLL measurement results 37 4.3 Conclusion 38 Chapter5 The revision VCO 42 Chapter6 Conclusion 48 Chapter7 Future work 51 Reference 52 Appendix A 56 Appendix B 57

    Reference
    [1] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “A two-qubit logic gate in silicon,” Nature 526, 410-414 (2015).
    [2] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and S. De Franceschi, “A CMOS silicon spin qubit,” Nat. Commun. 7, 13575 (2016).
    [3] B. Patra et al., "Cryo-CMOS Circuits and Systems for Quantum Computing Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan. 2018.
    [4] J. P. G. van Dijk, B. Patra, S. Pellerano, E. Charbon, F. Sebastiano and M. Babaie, "Designing a DDS-Based SoC for High-Fidelity Multi-Qubit Control," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 5380-5393, Dec. 2020.
    [5] R. Nikandish, E. Blokhina, D. Leipold and R. B. Staszewski, "Semiconductor Quantum Computing: Toward a CMOS quantum computer on chip," in IEEE Nanotechnology Magazine, vol. 15, no. 6, pp. 8-20, Dec. 2021.
    [6] J. Park et al., "A Fully Integrated Cryo-CMOS SoC for State Manipulation, Readout, and High-Speed Gate Pulsing of Spin Qubits," in IEEE Journal of Solid-State Circuits, vol. 56, no. 11, pp. 3289-3306, Nov. 2021.
    [7] X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, "A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N^2 ," in IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
    [8] Q. Shi, K. Bunsen, N. Markulic and J. Craninckx, "A Self-Calibrated 16-GHz Subsampling-PLL-Based Fast-Chirp FMCW Modulator With 1.5-GHz Bandwidth," in IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3503-3512, Dec. 2019.
    [9] Z. Zhang, G. Zhu and C. Patrick Yue, "A 0.65-V 12–16-GHz Sub-Sampling PLL With 56.4-fsrms Integrated Jitter and −256.4-dB FoM," in IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1665-1683, June 2020.
    [10] Y. Lim, J. Kim, Y. Jo, J. Bang and J. Choi, "A Wide-Lock-In-Range and Low-Jitter 12–14.5 GHz SSPLL Using a Low-Power Frequency-Disturbance-Detecting and Correcting Loop," in IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp. 480-491, Feb. 2022.
    [11] 周郁桀, “應用於量子運算低雜訊次取樣鎖相迴路”, 國立臺灣科技大學電機所碩士論文, Sep. 2021
    [12] Z. Yang, Y. Chen, J. Yuan, P. -I. Mak and R. P. Martins, "A 3.3-GHz Integer N-Type-II Sub-Sampling PLL Using a BFSK-Suppressed Push–Pull SS-PD and a Fast-Locking FLL Achieving −82.2-dBc REF Spur and −255-dB FOM," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 2, pp. 238-242, Feb. 2022.
    [13] J. Groszkowski, "The Interdependence of Frequency Variation and Harmonic Content, and the Problem of Constant-Frequency Oscillators," in Proceedings of the Institute of Radio Engineers, vol. 21, no. 7, pp. 958-981, July 1933.
    [14] M. Shahmohammadi, M. Babaie and R. B. Staszewski, "A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, Nov. 2016.
    [15] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [16] S. Galeone and M. P. Kennedy, "A comparison of simulation strategies for estimating phase noise in oscillators," 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2017, pp. 213-216.
    [17] X. Xu, C. Chen, T. Sugiura and T. Yoshimasu, "18-GHz band low-power LC VCO IC using LC bias circuit in 56-nm SOI CMOS," 2017 IEEE Asia Pacific Microwave Conference (APMC), 2017, pp. 938-941
    [18] I. Mansour, M. Aboualalaa, A. Allam, A. B. Abdel-Rahman, M. Abo-Zahhad and R. K. Pokharel, "Dual Band VCO Based on a High-Quality Factor Switched Interdigital Resonator for the Ku Band Using 180-nm CMOS Technology," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 12, pp. 1874-1878, Dec. 2018.
    [19] P. Kumar, D. Stajic, E. Böhme, E. N. Isa and L. Maurer, "A 500 mV, 4.5 mW, 16 GHz VCO with 33.3% FTR, designed for 5G applications," 2020 IEEE Nordic Circuits and Systems Conference (NorCAS), 2020, pp. 1-4
    [20] Y. -F. Kuo, Y. -P. Wu and Y. -C. Liu, "A Ku-Band Voltage-Controlled Oscillator Equipped With a Compact Enhanced Linearity Tuning Converter," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 181-183, Feb. 2021.
    [21] M. Ferriss, B. Sadhu, A. Rylyakov, H. Ainspan and D. Friedman, "10.8 A 12-to-26GHz fractional-N PLL with dual continuous tuning LC-D/VCOs," 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 196-198
    [22] M. Raj, A. Bekele, D. Turker, P. Upadhyaya, Y. Frans and K. Chang, "A 164fsrms 9-to-18GHz sampling phase detector based PLL with in-band noise suppression and robust frequency acquisition in 16nm FinFET," 2017 Symposium on VLSI Circuits, 2017, pp. C182-C183.
    [23] Z. Zhang et al., "An 18–23 GHz 57.4-fs RMS Jitter −253.5-dB FoM Sub-Harmonically Injection-Locked All-Digital PLL With Single-Ended Injection Technique and ILFD Aided Adaptive Injection Timing Alignment Technique," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3733-3746, Oct. 2019.
    [24] D. Pfaff, R. Abbott, X. -J. Wang, S. Moazzeni, R. Mason and R. R. smith, "A 14-GHz Bang-Bang Digital PLL With Sub-150-fs Integrated Jitter for Wireline Applications in 7-nm FinFET CMOS," in IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 580-591, March 2020.
    [25] J. Gong, Y. Chen, F. Sebastiano, E. Charbon and M. Babaie, "19.3 A 200dB FoM 4-to-5GHz Cryogenic Oscillator with an Automatic Common-Mode Resonance Calibration for Quantum Computing Applications," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 308-310.

    無法下載圖示 全文公開日期 2025/01/31 (校內網路)
    全文公開日期 2025/01/31 (校外網路)
    全文公開日期 2025/01/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE