簡易檢索 / 詳目顯示

研究生: 古庭輔
Ting-Fu Ku
論文名稱: 基植於量子卷積神經網路的工業大數據預測分析
Industrial Big Data Predictive Analytics based on Quantum Convolution Neural Network Approach
指導教授: 羅士哲
Shih-Che Lo
口試委員: 曹譽鐘
Yu-Chung Tsao
曾世賢
Shih-Hsien Tseng
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 32
中文關鍵詞: 大數據預測分析深度學習量子計算量子深度學習量子卷積神經 網絡
外文關鍵詞: Big Data Predictive Analytics, Deep Learning, Quantum Computing, Quantum Deep Learning, Quantum Convolution Neural Network
相關次數: 點閱:370下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在科技飛速創新的時代,大數據分析被廣泛應用於生活的各方面。工業 4.0 為世界帶來了大數據分析的進步。近年來,量子計算也受到更多關注。人們注意到量子計算的計算速度潛力。因此,人們希望未來能夠將工業4.0和量子計算的優勢結合起來。在本論文中,我們專注於在量子計算中結合經典深度學習和量子深度學習算法來預測工業大數據問題。
    經典神經網絡是進行預測和分類的最流行的數據挖掘技術。此外,人們在自然語言處理和強化學習中同樣會使用它。量子深度學習也用於基於量子比特的屬性進行二進制分類。我們試圖整合傳統深度學習和量子深度學習的特性來解決這些問題。因此,我們為預測問題設計了兩個混合量子卷積神經網絡模型。模型之間的區別在於 混合量子卷積神經網絡之前的量子比特的連接方式(Hybrid-QCNN)。本研究採用RMSE作為績效評價指標。我們使用 10 組數據集來測試兩種不同模型的預測準確性。結果顯示,兩種不同模型的預測精度和耗時​​有顯著差異,第一種混合量子卷積神經網絡比第二種混合量子卷積神經網絡好。


    Big data analytics has been widely applied in every aspect of life for a period of time in the era of rapid technological innovation. Industry 4.0 has brought the advancement of big data analytics to the world. Quantum computing has also attracted more attention in recent years. People notice the potential for computational speed in quantum computing. Therefore, people want to be able to combine the advantages of industry 4.0 and quantum computing in the future. In this research, we focus on combining classical deep learning and quantum deep learning algorithms within quantum computing to predict industrial big data problems.
    Classical neural network is the most popular data mining techniques to do prediction and classification. Moreover, people use it in natural language processing and reinforcement learning. Quantum deep learning is also used to do binary classification based on the properties of a qubit. We attempted to integrate the properties of traditional deep learning and quantum deep learning to solve the problems. Therefore, we designed two Hybrid-Quantum Convolution Neural Network (Hybrid-QCNN) models for prediction problems. The difference between the models is the connection method of the qubit before the Hybrid Classical–Quantum Convolutional Neural Network.
    This study uses the RMSE as a performance evaluation index. We used 10 datasets to test the prediction accuracy of two different models. The results show that the prediction accuracy and consuming time of the two different models have significant differences. The first Hybrid-Quantum Convolution Neural Network is better than the second Hybrid-Quantum Convolution Neural Network in prediction accuracy and consuming time

    摘要 I Abstract II Acknowledgement III Table of Contents IV List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Research Limitation 3 1.3 Research Objectives 3 1.4 Research Structure 3 Chapter 2 Literature Review 5 2.1 Big Data Analytics 5 2.2 Machine Learning 6 2.3 Deep Learning 7 2.4 Quantum Deep Learning 8 Chapter 3 Research Method 10 3.1 Data Encoding 10 3.2 Quantum Computing 10 3.3 Artificial Neural Network 12 3.4 Quantum Convolution Neural Network 13 3.5 Hybrid Classical–Quantum Convolutional Neural Network 14 3.6 Sliding Window 22 3.7 Forecasting Performance Measure 22 Chapter 4 Computational Experiment 23 4.1 Preliminary Experiment 24 4.2 Prediction Result 27 4.3 Summary 27 Chapter 5 Conclusion & Future Research 29 REFERENCES 30

    REFERENCES
    Ajagekar, A. and You, F. (2021). Quantum computing assisted deep learning for fault detection and diagnosis in industrial process systems. Computers & Chemical Engineering, 143(5), 107119. (DOI: 10.1016/j.compchemeng.2020.107119)
    Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. (DOI: 10.1023/A:1010933404324)
    Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation processes. Proceedings of the Harvard University Symposium on digital computers and their applications, 3-6. Cambridge: Harvard University Press. OCLC 498866871.
    Chen, T. and Guestrin, C. (2016). XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. (DOI: 10.1145/2939672.2939785)
    Cong, I., Choi, S. and Lukin, M. D. (2019). Quantum convolutional neural networks. Nature Physics, 15, 1273-1278, (DOI: 10.1038/s41567-019-0648-8)
    Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297. (DOI: 10.1007/BF00994018)
    Deng, L. and Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7(3-4), 197-387. (DOI: 10.1561/2000000039)
    Erevelles, S., Fukawa N. and Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904, (DOI: 10.1016/j.jbusres.2015.07.001)
    Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G. and Severini, S. (2018). Hierarchical quantum classifiers. npj Quantum Information, 4, 65. (DOI: 10.1038/s41534-018-0116-9)
    Liu, J., Lim K. H., Wood, K. L., Huang, W., Guo C. and Huang H. L. (2021). Hybrid quantum-classical convolutional neural networks. Science China Physics, Mechanics & Astronomy, 64. (DOI: 10.1007/s11433-021-1734-3)
    Kelley, H. J. (1960). Gradient theory of optimal flight paths. ARS Journal, 30(10), 947-954. (DOI: 10.2514/8.5282)
    Kravchik, M. and Shabtai, A. (2018). Detecting cyber attacks in industrial control systems using convolutional neural networks. Cyber-Physical Systems Security and Privacy, 72-83. (DOI: 10.1145/3264888.3264896)
    Mishra, D. K., Upadhyay, A. K. and Sharma, S. (2021). An efficient approach for manufacturing process using big data analytics. Materials Today, 47(19), 6864-6866. (DOI: 10.1016/j.matpr.2021.05.146)
    Laney, D. (2001). 3-D data management: Controlling data volume, velocity, and variety. File: 949 Addendum, META Group. (Access July 7, 2022 from: https://studylib.net/doc/8647594/3d-data-management--controlling-data-volume--velocity--an...)
    LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and time-series. The Handbook of Brain Theory and Neural Networks, The MIT Press, U.S.A., 255-258.
    LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86(11), 2278-2324. (DOI: 10.1109/5.726791)
    LeCun, Y., Bengio, Y. and Hinton G. (2015). Deep learning. Nature, 521, 436–444. (DOI: 10.1038/nature14539)
    Liang Y., Peng W., Zheng Z. J., Silvén O. and Zhao G., (2021). A hybrid quantum-classical neural network with deep residual learning. Neural Networks, 143, 133-147. (DOI: 10.1016/j.neunet.2021.05.028)
    McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J. and Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60–68.
    McCulloch, W. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133. (DOI: 10.1007/BF02478259)
    Monostori, L. (2003). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Engineering Applications of Artificial Intelligence, 16(4), 277-291. (DOI: 10.1016/S0952-1976(03)00078-2)
    Ovalle-Magallanes, E., Avina-Cervantes, J.G., Cruz-Aceves, I. and Ruiz-Pinales, J. (2022). Hybrid classical–quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography. Expert Systems with Applications, 189(1), 116112. (DOI: 10.1016/j.eswa.2021.116112)
    Roscher, R., Bohn, B., Duarte, M. F. and Garcke J. (2020). Explainable machine learning for scientific insights and discoveries. IEEE Access, 8, 42200-42216, (DOI: 10.1109/ACCESS.2020.2976199)
    Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning representations by back propagating errors. Nature, 323, 533-536. (DOI: 10.1038/323533a0)
    Seyedan, M. and Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7, 53. (DOI: 10.1186/s40537-020-00329-2)
    Stoudenmire, E. and Schwab, D. J. (2016). Supervised learning with tensor networks. Advances in Neural Information Processing Systems, 4799-4807.
    Tsai, C. and Chuang, T. (2006). Intelligent language comprehension system for automatic data analysis. Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology (IEEE), (DOI: 10.1109/CCST.2006.313466)
    Wen, S.-C. and Yang, C.-H. (2021). Time series analysis and prediction of nonlinear systems with ensemble learning framework applied to deep learning neural networks. Information Sciences, 572, 167-181, (DOI: 10.1016/j.ins.2021.04.094)
    West, N., Schlegl, T. and Deuse, J. (2021). Feature extraction for time series classification using univariate descriptive statistics and dynamic time warping in a manufacturing environment. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), (DOI: 10.1109/ICBAIE52039.2021.9389954)

    無法下載圖示 全文公開日期 2025/07/08 (校內網路)
    全文公開日期 2025/07/08 (校外網路)
    全文公開日期 2025/07/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE