簡易檢索 / 詳目顯示

研究生: 林廷俞
Ting-Yu Lin
論文名稱: 基植於量子計算的長短期記憶模型於電力網路品質分類問題研究
A Long Short-Term Memory Model based on Quantum Computing for the Power Network Quality Classification Problem
指導教授: 羅士哲
Shih-Che Lo
口試委員: 歐陽超
Chao Ou-Yang
曾世賢
Shih-Hsien Tseng
羅士哲
Shih-Che Lo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 53
中文關鍵詞: 大數據預測分析機器學習量子計算量子深度學習量子長短期記憶模型智慧電網工業4.0
外文關鍵詞: Big Data Predictive Analytics, Machine Learning, Quantum Computing, Quantum Deep Learning, Quantum Long Short-Term Memory Model, Smart Grid, Industry 4.0
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,科技突飛猛進的發展,大數據預測分析已成為各個領域最新興的話題之一。在工業4.0的時代,能源是一個不可避免的問題,在過去幾年中,可再生能源的使用大幅增加,越來越多的人從傳統發電轉向太陽能和風能等可再生能源。智慧電網是電力系統的先進概念,它協調系統網絡中的電力和通信。它為生產者、經營者和消費者適時地提供訊息。對家庭、組織、工業和智慧城市等消費領域高效傳導供電,有著極高的需求。在這方面,需要具有穩定系統的智慧電網來滿足動態電力的需求。由於影響電網穩定性的因素很多,因此預測智慧電網的穩定性仍然具有挑戰性。
    在本論文中,我們專注於在量子計算中結合經典深度學習和量子深度學習算法來預測電網品質穩定度,我們提出了LSTM的混合量子經典模型,稱之為量子長短期記憶(Quantum Long Short-Term Memory, QLSTM)模型,該模型能夠學習具有時間依賴性的數據,且主要與經典的長短期記憶和熱門的深度學習的模型(如CNN, RNN, MLP)進行比較,分析證明所提出的模型在準確率、精確率、召回率(敏感度)和F1分數指標方面的優越性。實驗結果顯示,本研究所提出的模型在準確率與傳統深度學習模型具有相近的表現,且在特定指標有更好的表現。


    With the advancement of science and technology and the rapid development of science and technology, big data predictive analytics has become one of the most emerging topics in various fields. Energy is an unavoidable issue in the age of Industry 4.0, and the use of renewable energy has increased significantly over the past few years, with more and more people switching from traditional power generation to renewable energy sources such as solar and wind power. A smart grid is an advanced power system concept, which coordinates power and communication in the system network. It provides timely information for producers, operators, and consumers. There is a high demand for efficient conductive power supply in consumer areas such as homes, organizations, industries, and smart cities. In this regard, a smart grid with a stable system is required to meet dynamic power demands. Predicting the stability of a smart grid remains challenging due to the many factors that affect grid stability.
    In this thesis, we focus on combining classical deep learning and quantum deep learning algorithms in quantum computing to predict power grid quality stability. We propose a hybrid quantum-classical model of LSTM called Quantum Long Short-Term Memory (QLSTM), this model can learn time-dependent data, and it is mainly compared with classic long-term short-term memory and popular deep learning models, such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Multilayer Perceptron (MLP). The experiment results prove that the proposed model is in superiority in terms of accuracy, precision, recall (sensitivity), and F1 score metrics. Moreover, the proposed model has similar performance to the traditional deep learning model in terms of accuracy, and has better performance in certain indicators.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究侷限 4 1.3 研究目標 4 1.4 研究架構 4 第二章 文獻回顧 6 2.1 大數據(Big Data) 6 2.2 機器學習(Machine Learning) 8 2.3 深度學習(Deep Learning) 9 2.4 量子深度學習(Quantum Deep Learning) 10 2.5 智慧電網(Smart Grid) 12 第三章 研究方法 13 3.1 量子嵌入(Data Encoding) 13 3.2 量子計算(Quantum Computing) 13 3.3 長短期記憶(Long Short-Term Memory) 15 3.4 變分量子電路(Variational Quantum Circuits, VQCs) 18 3.5 量子長短期記憶(Quantum Long Short-Term Memory) 18 3.6 二元分類表現評估 21 第四章 研究結果 22 4.1 資料描述 22 4.2 實驗流程、參數設定 27 4.3 模型分類結果 34 4.4 討論 40 第五章 總結 41 5.1 結論 41 5.2 未來研究 41 Reference 42

    Alazab, M., Khan, S., Krishnan, S. S. R., Pham, Q. V., Reddy, M. P. K. and Gadekallu, T. R. (2020). A multidirectional LSTM model for predicting the stability of a smart grid. IEEE Access, 8, 85454-85463. (DOI: 10.1109/ACCESS.2020.2991067)
    Arzamasov, V., Böhm, K. and Jochem, P. (2018). Towards concise models of grid stability. In 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 1-6). (DOI: 10.1109/SmartGridComm.2018.8587498)
    Bausch, J. (2020). Recurrent quantum neural networks. Advances in neural information processing systems, 33, 1368-1379. (DOI: 10.48550/arXiv.2006.14619)
    Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R. and Khatri, R. K. (2022). Predicting stock market index using LSTM. Machine Learning with Applications, 100320. (DOI: 10.1016/j.mlwa.2022.100320)
    Bose, B. K. (2017). Artificial intelligence techniques in smart grid and renewable energy systems—Some example applications. Proceedings of the IEEE, 105(11), 2262-2273. (DOI: 10.1109/JPROC.2017.2756596)
    Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. (DOI: 10.1007/BF00058655)
    Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. (DOI: 10.1023/A:1010933404324)
    Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (2017). Classification and regression trees. Routledge. (DOI: 10.1201/9781315139470)
    Ceschini, A., Rosato, A. and Panella, M. (2021). Design of an LSTM Cell on a Quantum Hardware. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), 1822-1826. (DOI: 10.1109/TCSII.2021.3126204)
    Chen, C. P. and Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information sciences, 275, 314-347. (DOI: 10.1016/j.ins.2014.01.015)
    Chen, M., Mao, S. and Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209. (DOI: 10.1007/s11036-013-0489-0)
    Chen, S. Y. C., Yoo, S. and Fang, Y. L. L. (2022). Quantum long short-term memory. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8622-8626). (DOI: 10.1109/ICASSP43922.2022.9747369)
    Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. (DOI: 10.1007/BF00994018)
    Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. (DOI: 10.1109/TIT.1967.1053964)
    Dargan, S., Kumar, M., Ayyagari, M. R. and Kumar, G. (2020). A survey of deep learning and its applications: a new paradigm to machine learning. Archives of Computational Methods in Engineering, 27(4), 1071-1092. (DOI: 10.1007/s11831-019-09344-w)
    Deng, Z., Zhu, X., Cheng, D., Zong, M. and Zhang, S. (2016). Efficient kNN classification algorithm for big data. Neurocomputing, 195, 143-148. (DOI: 10.1016/j.neucom.2015.08.112)
    El Naqa, I. and Murphy, M. J. (2015). What is machine learning? Machine Learning in Radiation Oncology (pp. 3-11). Springer, Cham. (DOI: 10.1007/978-3-319-18305-3_1)
    Ezzahra, M. F., Nadia, A. F. I. F. I. and Imane, H. I. L. A. L. (2019). Big data dependability opportunities & challenges. In 2019 1st International Conference on Smart Systems and Data Science (ICSSD) (pp. 1-4). (DOI: 10.1109/ICSSD47982.2019.9002676)
    Feynman, R. P. (2018). Simulating physics with computers. In Feynman and computation (pp. 133-153). CRC Press. (DOI: 10.1201/9780429500459-11)
    Gahi, Y., Guennoun, M. and Mouftah, H. T. (2016). Big data analytics: Security and privacy challenges. In 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 952-957). (DOI: 10.1109/ISCC.2016.7543859)
    Gantz, J. and Reinsel, D. (2011). Extracting value from chaos. IDC iview, 1142(2011), 1-12.
    Graves, A., Fernández, S. and Schmidhuber, J. (2005). Bidirectional LSTM networks for improved phoneme classification and recognition. In International conference on artificial neural networks (pp. 799-804). Springer, Berlin, Heidelberg. (DOI: 10.1007/11550907_163)
    Guo, S. and Ma, L. (2023). A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation. Energy, 263, 125872. (DOI: 10.1016/j.energy.2022.125872)
    Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507. (DOI: 10.1126/science.1127647)
    Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844. (DOI: 10.1109/34.709601)
    Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. (DOI: 10.1162/neco.1997.9.8.1735)
    Jagatheesaperumal, S. K., Rahouti, M., Ahmad, K., Al-Fuqaha, A. and Guizani, M. (2021). The duo of artificial intelligence and big data for Industry 4.0: Applications, techniques, challenges, and future research directions. IEEE Internet of Things Journal. (DOI: 10.1109/JIOT.2021.3139827)
    Kak, S. C. (1995). Quantum neural computing. Advances in Imaging and Electron Physics, 94, 259-313. (DOI: 10.1016/S1076-5670(08)70147-2)
    Khalilia, M., Chakraborty, S. and Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC medical informatics and decision making, 11(1), 1-13. (DOI: 10.1186/1472-6947-11-51)
    Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.
    Lengua, M. A. C. and Quiroz, E. A. P. (2020). A Systematic Literature Review on Support Vector Machines Applied to Classification. In 2020 IEEE Engineering International Research Conference (EIRCON) (pp. 1-4). (DOI: 10.1109/EIRCON51178.2020.9254028)
    Liu, N., Huang, T., Gao, J., Xu, Z., Wang, D. and Li, F. (2021). Quantum-enhanced deep learning-based lithology interpretation from well logs. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13. (DOI: 10.1109/TGRS.2021.3085340)
    Liu, Z., Xu, L., Qin, N., Yang, A., Chen, Y., Huang, D. and Shu, J. (2023). Prediction of esophageal and gastric varices rebleeding for cirrhotic patients based on deep learning. Biomedical Signal Processing and Control, 81, 104420. (DOI: 10.1016/j.bspc.2022.104420)
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. URL: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation (Access on 27 January 2023)
    Maulud, D. and Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140-147. (DOI: 10.38094/jastt1457)
    McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J. and Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
    McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133. (DOI: doi.org/10.1007/BF02478259)
    Meijer, E. (2011). The world according to LINQ. Communications of the ACM, 54(10), 45-51. (DOI: 10.1145/2001269.2001285)
    Moldovan, D. and Salomie, I. (2019). Detection of sources of instability in smart grids using machine learning techniques. In 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 175-182). (DOI: 10.1109/ICCP48234.2019.8959649)
    Montgomery, D. C., Peck, E. A. and Vining, G. G. (2021). Introduction to Linear Regression Analysis. John Wiley & Sons. (ISBN: 978-1-119-57872-7)
    Ovalle-Magallanes, E., Avina-Cervantes, J. G., Cruz-Aceves, I. and Ruiz-Pinales, J. (2022). Hybrid classical–quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography. Expert Systems with Applications, 189, 116112. (DOI: 10.1016/j.eswa.2021.116112)
    Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883. (DOI: 10.4249/scholarpedia.1883)
    Purushothaman, G. and Karayiannis, N. B. (1997). Quantum neural networks (QNNs): inherently fuzzy feedforward neural networks. IEEE Transactions on neural networks, 8(3), 679-693. (DOI: 10.1109/72.572106)
    Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. (DOI: 10.1037/h0042519)
    Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536. (DOI: 10.1038/323533a0)
    Salam, A. and El Hibaoui, A. (2021). Applying Deep Learning Model to Predict Smart Grid Stability. In 2021 9th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-9). (DOI: 10.1109/IRSEC53969.2021.9741136)
    Schuld, M. and Petruccione, F. (2018). Supervised learning with quantum computers (Vol. 17). Berlin: Springer. (DOI: 10.1007/978-3-319-96424-9_4)
    Seghier, M. E. A. B., Plevris, V. and Solorzano, G. (2022). Random forest-based algorithms for accurate evaluation of ultimate bending capacity of steel tubes. In Structures (Vol. 44, pp. 261-273). Elsevier. (DOI: 10.1016/j.istruc.2022.08.007)
    Sinha, P. and Sinha, P. (2015). Comparative study of chronic kidney disease prediction using KNN and SVM. International Journal of Engineering Research and Technology, 4(12), 608-12. (DOI: 10.17577/IJERTV4IS120622)
    Stoudenmire, E. and Schwab, D. J. (2016). Supervised learning with tensor networks. Advances in Neural Information Processing Systems, 29.
    Tasevski, P. (2011). Password attacks and generation strategies. Tartu University: Faculty of Mathematics and Computer Sciences.
    Tuballa, M. L. and Abundo, M. L. (2016). A review of the development of Smart Grid technologies. Renewable and Sustainable Energy Reviews, 59, 710-725. (DOI: 10.1016/j.rser.2016.01.011)
    Werbos, P. J. (1994). The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting (Vol. 1). John Wiley & Sons. (ISBN: 978-0-471-59897-8)
    Yanofsky, N. S. and Mannucci, M. A. (2008). Quantum computing for computer scientists. Cambridge University Press. (DOI: 10.1017/CBO9780511813887)
    Youssouf, N. (2022) Traffic Sign Detection and Recognition with Faster-RCNN and YOLOV4. Available at SSRN 4012734. (DOI: 10.2139/ssrn.4012734)
    Zhang, J. and Huang, M. L. (2013). 5Ws model for big data analysis and visualization. In 2013 IEEE 16th International Conference on Computational Science and Engineering (pp. 1021-1028). (DOI: 10.1109/CSE.2013.149)
    Zikopoulos, P. C., Eaton, C., deRoos, D., Deutsch, T. and Lapis, G. (2012). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, 2012. (ISBN: 978007179

    無法下載圖示 全文公開日期 2026/02/01 (校內網路)
    全文公開日期 2026/02/01 (校外網路)
    全文公開日期 2026/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE