簡易檢索 / 詳目顯示

研究生: 黃崇瑋
Chong-Wei Huang
論文名稱: 分子動力學模擬不同晶體結構與晶面效應對擴散接合之機械行為影響
A Study on Mechanical Property for Various Crystal Structure and Orientation after Diffusion Bonding by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-ching Lin
口試委員: 蘇裕軒
Yu-hsuan Su  
呂道揆
Dao-kuei Lyu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 137
中文關鍵詞: 分子動力學晶面效應擴散接合
外文關鍵詞: Molecular dynamics, Effects of crystal face, Diffusion bonding
相關次數: 點閱:379下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用分子動力學(Molecular Dynamics, MD)模擬不同晶體結構之銅/鎢奈米線(FCC/BCC)與銅/鎳奈米線(FCC/FCC)以不同結晶方向進行擴散接合。並搭配拉伸模擬實驗,探討經由擴散接合製程後材料的強度、延展性與塑變行為。針對不同晶體結構與不同晶面效應對擴散接合的影響加以比較分析。
模擬結果顯示,不同晶體結構(FCC/BCC)的銅/鎢奈米線,以四種不同結晶方向擴散接合後,最終拉伸破壞模式皆位於材料的接合界面處;其中以銅(110)/鎢(110)晶面奈米線之強度以及延性較佳。而在相同晶體結構(FCC/FCC)的銅/鎳奈米線,以四種不同結晶方向擴散接合後,拉伸結果皆會先在銅原子區域發生頸縮後破斷;其中以銅(100)/鎳(100)奈米線之強度最佳以及延性最好。綜合比較,以相同的晶體結構與相同族的晶面進行異種金屬奈米線接合時,較容易發生擴散而形成合金化接合界面,可達到最佳之接合強度與延性。


This study analyzes mechanical properties and deformation behaviors of various crystal structures and orientations of copper/tungsten and copper/nickel nanowires by simple tension tests after diffusion bonding using molecular dynamics (MD) simulation. Additionally, the bonding effects of diffusion bonding upon two crystal structures (FCC/BCC) and orientations (effects of crystal face) are compared.
Results show that the ultimate tensile failure modes of FCC and BCC crystal structures of the copper/tungsten nanowires are located at the interface of materials by the four crystal orientations diffusion bonding, and the crystal surfaces of Cu(110)/W(110) of nanowires reveal superior strength and ductility. After the diffusion bonding of the same crystal structures (FCC/FCC) and four dissimilar crystal orientations of copper/nickel nanowires, necking and breaking phenomena are appeared in the copper atoms region; the Cu(100)/Ni(100) nanowires have optimum strength and ductility. The same crystal structure and face by the diffusion bonding of dissimilar metal nanowires can achieve the excellent bonding strength and ductility.

摘要 I Abstract II 致謝 III 目錄 IV 表索引 VI 圖索引 VII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 3 第二章 分子動力學基礎理論 6 2.1 分子動力學之基本假設 6 2.2 分子間作用力與勢能函數 6 2.3 運動方程式及演算法 12 2.4 Verlet 表列法 16 2.5 週期性邊界條件 18 2.6 無因次化 21 2.7 原子級應力計算方法 23 2.8 Centrosymmetry參數(CSP) 27 第三章 模擬步驟與模型建立 32 3.1 程式模擬步驟 32 3.1.1 初始設定(Initialization) 32 3.1.1.1 預備(Preliminaries) 34 3.1.1.2 初始條件(Initial Conditions) 39 3.1.2 平衡(Equilibration) 40 3.1.3 動態模擬(Production) 41 3.2 模型建構 42 第四章 結果與討論 48 4.1 模型建立方式 48 4.1.1 理想模型之勢能函數的銅(100)/鎢(100)奈米線拉伸行為分析 48 4.1.2 Morse模型勢能函數之修正 56 4.1.3 修正模型勢能函數之拉伸行為模擬 57 4.2 擴散接合製程模擬程序 63 4.3 不同晶體結構與不同晶面接合之奈米線單軸拉伸行為分析 68 4.3.1 銅/鎢奈米線擴散接合後之拉伸行為 69 4.3.1.1 銅(100)/鎢(100)奈米線在擴散接合製程後之拉伸行為 69 4.3.1.2 銅(100)/鎢(110)奈米線在擴散接合製程後之拉伸行為 76 4.3.1.3 銅(110)/鎢(100)奈米線在擴散接合製程後之拉伸行為 81 4.3.1.4 銅(110)/鎢(110)奈米線在擴散接合製程後之拉伸行為 86 4.3.1.5 晶面效應對銅/鎢奈米線之擴散接合影響 91 4.3.2 銅/鎳奈米線擴散接合後之拉伸行為 96 4.3.2.1 銅(100)/鎳(100)奈米線在擴散接合製程後之拉伸行為 96 4.3.2.2 銅(100)/鎳(110)奈米線在擴散接合製程後之拉伸行為 103 4.3.2.3 銅(110)/鎳(100)奈米線在擴散接合製程後之拉伸行為 107 4.3.2.4 銅(110)/鎳(110)奈米線在擴散接合製程後之拉伸行為 112 4.3.2.5 晶面效應對銅/鎳奈米線之擴散接合影響 117 4.3.3 不同晶體結構依不同晶面取向之擴散接合綜合比較 122 4.4 擴散溫度與擴散時間對材料接合強度之影響 125 第五章 結論與建議 128 5.1 結論 128 5.2 未來研究方向與建議 130 參考文獻 132 作者簡介 137

1.莊東漢, "擴散接合技術探討", 機械月刊, 第二十一卷, 第十二期,第198-209頁(1995).
2.S. Kalpakjian and S. R. Schmid, "Manufacturing Engineering and Technology", PEARSON, pp.914-916.
3.C. M. Liber, "Nanoscale Science and Technology: Building a Big Future from Small Things", MRS Bull, Vol.28, pp.486-491(2003).
4.J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", The Journal of chemical physics, Vol.18, No.6, pp.817-829(1950).
5.N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H.Teller, "Equation of Calculations By Fast Computing Machines", Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
6.Loup Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol.159, No.1, pp.98-103(1967).
7.B. Quentrec and C. Brot, "New Method for Neighbors in Molecular Dynamics Computations", Journal of Computational Physics, Vol.13, pp.430-432(1973).
8.Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W. L. and Goddard, W. A., "Strain Rate Induced Amorphization in Metallic Nanowires", Physical Review Letters, Vol.82, pp.2900-2930(1999).
9.R. Komanduri, N. Chandrasekaran and L. M. Raff, "Molecular Dynamics (MD) Simulations of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel", International Journal of Mechanical Sciences, Vol.43, pp.2237-2260(2001).
10.S. D. Chen, A. K. Soh and F. J. Ke, "Molecular Dynamics Modeling of Diffusion Bonding", Scripta Materialia, Vol.52, pp.1135-1140 (2005).
11.Shangda Chen, Fujiu Ke, Min Zhou and Yilong Bai, "Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding between Cu and Al", Acta Materialia, Vol.55, pp.3169-3175(2007).
12.J. E. Jones, "On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature", Proceedings of the Royal Society of Physical Character, Vol.106, No.738, pp.441-462(1924).
13.J. E. Jones, "On The Determination of Molecular Fields. II. From the Equation of State of a Gas", Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, Vol.106, No.738, pp.463-477(1924).
14.Philip M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels", Phtsical Review, Vol.34, pp.57-64(1929).
15.V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and Structural Properties of FCC Transition Metals Using A Simple Tight-Binding Model", Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, Vol.59, pp.321-336(1989).
16.Murray S. Daw and M. I. Baskes, "Semiempirical Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals", Physical Review Letters, Vol.50, No.17, pp.1285-1301(1983).
17.Murray S. Daw and M. I. Baskes, "Eambedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals", Physical Review B, Vol.29, No.12, pp.6443-6453(1984).
18.Murray S. Daw, "Model of Metallic Cohesion: The Embedded-Atom Method", Physical Review B, Vol.39, No.11, pp.7441-7452(1989).
19.R. A. Johnson, "Analytic Nearest-Neighbor Model for FCC Metals", Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
20.R. A. Johnson, "Alloy Models with The Embedded-Atom Method", Physical Review B, Vol.39, No.17, pp.12554-12559(1989).
21.R. A. Johnson and D. J. Oh, "Analytic Embedded Atom Method Model for BCC Metals", Journal of Materials Research Sociery, Vol.4, No.5, pp.1195-1201(1989).
22.M. W. Finnis and J. E. Sinclair, "A Simple Empirical N-Body Potentials for Transition Metals", Philosophical Magazine A, Vol.50, pp.45-55(1984).
23.Y. Mishin and D. Farkas, "Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations", Physical Review B, Vol.59, No.5, pp.3393-3407(1999).
24.C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, (1971).
25.J. M. Haile, Molecular Dynamics Simulation: Elementrary Methods(A Wiley-Interscience Publication), John Wiley & Sons, Inc, USA, (1992).
26.R. Calusius, "On a Mechanical Theory Applicable to Heat", Philosophical Magazine, Vol.40, pp.122-127(1870).
27.Z. S. Basinski, M. S. Duesbery and R. Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice", Canadian Journal of Physics, Vol.49, pp.2160-2180(1971).
28.D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model", Philosophical Magazine A, Vol.44, pp.847-866(1981).
29.N. Miyazaki and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method", JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
30.Y. C. Lin and D. J. Pen, "Atomic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method", Molecular Simulation, Vol.33, pp. 979-988(2007).
31.T. Iwaki, "Molecular Dynamics Study on Stress-Strain in Very Thin Film(Size and location of Region for Defining Stress and Strain)", JSME International Journal Series A, Vol.39, No.3, pp.346-353(1996).
32.Cynthia L. Kelchner, S. J. Plimpton and J. C. Hamilton, "Dislocation Nucleation and Defect Structure During Surface Indentation", Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
33.彭達仁., "分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析", 國立台灣科技大學博士論文, (2008).
34.柯伊鴻., "分子動力學模擬應變率對不同晶體結構的機械行為之影響", 國立台灣科技大學博士論文, (2011).
35.L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, No.3, pp. 687-690 (1959).
36.A. M. Guellil and J. B. Adams, "The Application of The Analytic Embedded Atom Method to BCC Metals and Alloys", Journal of Materials Research Sociery, Vol.7, No.3, pp.639-652(1992).
37.Zhang Bangwei and Ouyang Yifang, "Theoretical Calculation of Thermodynamic Data for BCC Binary Alloys with The Embedded-Atom Method", Physical Review B, Vol.48, No.5, pp.3022-3029(1993).
38.Ibrahim H. Dursun, Ziya B. Güvenç and E. Kasap, "A Simple Analytical EAM Model for Some BCC Metals", Commun Nonlinear Sci Numer Simulat, Vol.15, pp.1259-1266(2010).
39.R. A. Johnson and D. J. Oh, "Atomistic Simulation of Materials Beyond Pair Potentials", World Materials Congress, ASM,(1988).
40.G. Lasko, D. Saraev, S. Schmauder and P. Kizler, "Atomic-scal Simulations of the Interaction between a Moving Dislocation and a BCC/FCC Phase Boundary", Computational Materials Science, Vol.32, pp418-425(2005).
41.Prevarskii, A. P., Kuzma and Yu. B, "Liquid-Phase Sintering (LPS) of Tungsten-Based Heavy Alloys: Hafnium and Copper Addition", Russ. Metall. Vol.5, pp187(1983).
42.F. Cverna, "Thermal Properties of Metals", ASM Materials Data Series, pp9-13(2002).
43.F. J. Resende, V. E. Carvalho, B. V. Costa and C. M. C. de Castilho, "Temperature Dependent Structure of Low Index Copper Surfaces Studied by Molecular Dynamics Simulation", Brazilian Journal of Physics, Vol.34, pp.414-418(2004).
44.張柳春,郭行健, "材料科學與工程", 歐亞書局有限公司, pp285-29(2005).
45.M. A. Meyers and K. K. Chawla, "Mechanical Behavior of Materials", CAMBRIDGE, pp337-340(2009).

無法下載圖示 全文公開日期 2015/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE