簡易檢索 / 詳目顯示

研究生: 汪靚蓉
Jing-Rong Wang
論文名稱: 以擴展型卡爾曼濾波器為基礎之感應 馬達即時無速度感測控制及定子與轉 子溫度估測
Real-time Speed Sensorless Control and Rotor and Stator Temperature Estimation of Induction Motors based on Extended Kalman Filter
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蘇裕軒
Yu-Hsuan Su
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 155
中文關鍵詞: 感應馬達擴展型卡爾曼濾波器無速度感測器控制即時估測
外文關鍵詞: Extended kalman filte, Estimation load, rotor and stator temperature
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

感應馬達在結構特性上因堅固耐用、易於維護、價格低廉等優點,被廣泛的應用在工業界中,近年來更由於向量控制技術日漸成熟,使得感應馬達的控制性能大幅提升。然而為了達到精確的速度回授控制,經常需要加裝速度感測器來測量轉速,在特定用途的感應馬達因其成本、包裝及環境限制等因素,使得無感測控制的方法得以被提出。在本論文中以擴展型卡爾曼濾波器(Extended Kalman Filter, EKF)為基礎發展感應馬達的即時無速度感測器控制及狀態估測,除了對速度的估測外,EKF還用於其他重要狀態的即時估測,如負載、定子及轉子溫度。在即時控制的環境當中以TI TMS320F28335 作為控制核心,驗證感應馬達之無速度感測器控制和基於EKF 的估測器性能。


Induction motors have the advantages of being robust, easy to maintain and inexpensive in terms of their structural characteristics, and are thus widely used in the industry. In recent years, due to the maturity of vector control technology, the control performance of induction motors has been greatly improved. However, in order to achieve accurate feedback control of the speed, it is often necessary to include a speed sensor for the rotating speed measurement. In some appications of induction motors, due to the cost, packaging and environment constraints, the method of speed sensorless control has been proposed. In this thesis, realtime speed sensorless control and state estimation of induction motors is developed based on Extended Kalman Filter (EKF). Besides an estimate of the speed, the EKF is also used for real-time estimation of other important states such as load, stator and rotor temperature. The performance of the speed sensorless control and EKF-based estimator is validated in real-time control environment with TI TMS320F28335 as the control core.

摘要 i 英文摘要 ii 致謝 iii 目錄 vi 圖目錄 x 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究目的 5 1.4 論文架構 6 第二章 實驗設備與軟體 7 2.1 硬體設備 7 2.1.1 驅控器 9 2.1.2 TMS320F28335 控制晶片 11 2.1.3 感應馬達 12 2.1.4 旋轉編碼器 13 2.1.5 自耦變壓器 14 2.1.6 扭矩感測器 15 2.1.7 磁滯制動器 16 2.1.8 溫度感測器 17 2.1.9 數據擷取系統 19 2.2 軟體設備 21 2.2.1 Code Composer Studio v10.4 21 2.2.2 MATLAB 21 2.2.3 Simulink 22 第三章 感應馬達之動態模型 23 3.1 感應馬達簡介 23 3.2 感應馬達之 abc 軸動態方程式 27 3.3 座標軸轉換及其應用 31 3.4 感應馬達之 qd0 軸動態方程式 37 3.5 電磁轉矩與運動方程式 45 3.6 熱動態模型 47 3.6.1 馬達功率損失 47 3.6.2 熱動態模型 49 第四章 控制及估測方法介紹 56 4.1 控制方法 56 4.1.1 空間向量脈寬調變 56 4.1.2 磁場導向控制 60 4.2 估測方法 64 4.2.1 卡爾曼濾波器簡介 64 4.2.2 離散時間之卡爾曼濾波器 66 4.2.3 擴展型卡爾曼濾波器 72 4.3 無速度感測器之卡爾曼濾波器設計 76 4.3.1 速度與負載擴展項 77 4.3.2 溫度變化估測之卡爾曼濾波器設計 83 第五章 模擬及實驗結果 87 5.1 模擬結果 87 5.2 系統架構 94 5.3 實驗結果 97 5.3.1 短時間估測實驗 97 5.3.2 長時間估測實驗 128 第六章 結論與未來展望 132 6.1 結論 132 6.2 未來展望 133 參考文獻 139 附錄 140 A 符號定義說明 141

[1] F.Blaschke, “The principle of field orientation applied to the new transvector closed- loop control system for rotating field machines,” vol. 34, pp. 217–220, 1972.
[2] A. V. Ravi Teja, V. Verma, and C. Chakraborty, “A new formulation of reactive-power- based model reference adaptive system for sensorless induction motor drive,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6797–6808, 2015.
[3] S. Maiti, C. Chakraborty, Y. Hori, and M. C. Ta, “Model reference adaptive controller- based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power,” IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 594–601, 2008.
[4] X. Sun, L. Chen, Z. Yang, and H. Zhu, “Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 4, pp. 1357–1366, 2013.
[5] M. Wlas, Z. Krzeminski, J. Guzinski, H. Abu-Rub, and H. Toliyat, “Artificial-neural- network-based sensorless nonlinear control of induction motors,” IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 520–528, 2005.
[6] F. Alonge and F. D’Ippolito, “Extended kalman filter for sensorless control of induction motors,” in 2010 First Symposium on Sensorless Control for Electrical Drives, pp. 107– 113, 2010.
[7] M. Barut, S. Bogosyan, and M. Gokasan, “Speed-sensorless estimation for induction motors using extended kalman filters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 272–280, 2007.
[8] M. Khafallah, A. El Afia, A. Cheriti, F. El Mariami, A. Saad, and B. El Moussaoui, “Ekf based speed sensorless vector control of an induction machine,” in 2004 IEEE Interna- tional Conference on Industrial Technology, 2004. IEEE ICIT’04., vol. 3, pp. 1338– 1344, IEEE, 2004.
[9] A. Munoz-Garcia, T. Lipo, and D. Novotny, “A new induction motor v/f control method capable of high-performance regulation at low speeds,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 813–821, 1998.
[10] I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor,” IEEE Transactions on Industry Applications, vol. 25, no. 2, pp. 257–264, 1989.
[11] C. Lascu, I. Boldea, and F. Blaabjerg, “A modified direct torque control for induction motor sensorless drive,” IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 122–130, 2000.
[12] W. Li, Z. Xu, and Y. Zhang, “Induction motor control system based on foc algorithm,” in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 1544–1548, 2019.
[13] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.
[14] K. Shivaramakrishna, A. K. Chauhan, M. Raghuram, and S. K. Singh, “Sensorless con- trol of induction motor using ekf: Analysis of parameter variation on ekf performance,” in 2016 IEEE International Conference on Power Electronics, Drives and Energy Sys- tems (PEDES), pp. 1–4, IEEE, 2016.
[15] S. Allaoui, K. Chafaa, Y. Laamari, and B. Athamena, “Induction motor state estimation using tuned extended kalman filter,” in 2015 4th International Conference on Electrical Engineering (ICEE), pp. 1–5, 2015.
[16] M. Barut, S. Bogosyan, and M. Gokasan, “Speed-sensorless estimation for induction motors using extended kalman filters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 272–280, 2007.
[17] M. Barut, S. Bogosyan, and M. Gokasan, “Switching ekf technique for rotor and sta- tor resistance estimation in speed sensorless control of ims,” Energy Conversion and Management, vol. 48, no. 12, pp. 3120–3134, 2007.
[18] M. Barut, S. Bogosyan, and M. Gokasan, “Experimental evaluation of braided ekf for sensorless control of induction motors,” IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 620–632, 2008.
[19] M. Barut, R. Demir, E. Zerdali, and R. Inan, “Real-time implementation of bi input- extended kalman filter-based estimator for speed-sensorless control of induction mo- tors,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4197–4206, 2012.
[20] M. Barut, “Bi input-extended kalman filter based estimation technique for speed- sensorless control of induction motors,” Energy Conversion and Management, vol. 51, no. 10, pp. 2032–2040, 2010.
[21] C.-J. Chiang, Y.-K. Wang, and W.-T. Cheng, “Ekf-based rotor and stator resistance es- timation in speed sensorless control of induction motors,” in 2012 American Control Conference (ACC), pp. 1174–1179, IEEE, 2012.
[22] L. Et-Taaj, Z. Boulghasoul, A. Elbacha, and A. El Kharki, “Robust sensorless induc- tion motor control based on extended kalman filter observer,” in 2021 International Congress of Advanced Technology and Engineering (ICOTEN), pp. 1–9, 2021.
[23] W. Zhang and J. J. Luo, “Speed and rotor flux estimation of induction motors based on extended kalman filter,” in The 6th International Conference on Networked Computing and Advanced Information Management, pp. 157–160, IEEE, 2010.
[24] M. L. Jayaramu, H. N. Suresh, M. S. Bhaskar, D. Almakhles, S. Padmanaban, and
U. Subramaniam, “Real-time implementation of extended kalman filter observer with improved speed estimation for sensorless control,” IEEE Access, vol. 9, pp. 50452– 50465, 2021.
[25] F. Barbieri, R. P. Chandrasena, F. Shahnia, S. Rajakaruna, and A. Ghosh, “Application notes and recommendations on using tms320f28335 digital signal processor to control voltage source converters,” in 2014 Australasian Universities Power Engineering Con- ference (AUPEC), pp. 1–7, 2014.
[26] J. Boys and M. Miles, “Empirical thermal model for inverter-driven cage induction machines,” IEE Proceedings-Electric Power Applications, vol. 141, no. 6, pp. 360– 372, 1994.
[27] J. Al-Tayie and P. Acarnley, “Estimation of speed, stator temperature and rotor temper- ature in cage induction motor drive using the extended kalman filter algorithm,” IEE Proceedings-Electric Power Applications, vol. 144, no. 5, pp. 301–309, 1997.
[28] 王衍凱, 「以擴展型卡爾曼濾波器為基礎之感應馬達無感測器控制及定子與轉子阻抗估測」. 國立台灣科技大學機械工程學系,碩士論文, 2010.
[29] 蕭昱鼎, 「以擴展型卡爾曼濾波器為基礎進行感應馬達轉速, 負載, 轉子即定子溫度之即時估測」. 國立台灣科技大學機械工程學系,碩士論文, 2019.
[30] 謝仲翔, 「空間向量脈寬調變驅控之鼠籠式感應馬達動態建模」. 國立台灣科技大學機械工程學系,碩士論文, 2017.
[31] 黃仲欽, 電機機械理論. 課程講義„ 2015.
[32] 林正浩, 「三相感應電動機之 DSP 直接轉矩控系統研製」. 國立台灣大學電機工程學系,碩士論文, 2001.
[33] 劉昌煥, 「交流電機控制-向量控制與直接轉矩控制原理」. 東華書局, 2008.
[34] R. Beguenane and M. E. H. Benbouzid, “Induction motors thermal monitoring by means of rotor resistance identification,” IEEE Transactions on Energy conversion, vol. 14, no. 3, pp. 566–570, 1999.
[35] P. Mellor, D. Roberts, and D. Turner, “Lumped parameter thermal model for electrical machines of tefc design,” in IEE Proceedings B (Electric Power Applications), no. 5, pp. 205–218, 1991.
[36] G. D. Demetriades, H. Z. De La Parra, E. Andersson, and H. Olsson, “A real-time ther- mal model of a permanent-magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 463–474, 2009.
[37] 顏銘辰, 「整合熱電耦合及失效模式之感應馬達動態模型」. 國立台灣科技大學機械工程學系,碩士論文, 2015.
[38] D.-C. Lee and G.-M. Lee, “A novel overmodulation technique for space-vector pwm inverters,” IEEE transactions on Power Electronics, vol. 13, no. 6, pp. 1144–1151, 1998.
[39] Y. Zhao and T. A. Lipo, “Space vector pwm control of dual three-phase induction ma- chine using vector space decomposition,” IEEE Transactions on industry applications, vol. 31, no. 5, pp. 1100–1109, 1995.
[40] K. Ogata, Discrete time control systems. Prentice Hall, Inc., 1987.
[41] M. B. B. Akin, “Sensorless field oriented control of 3-phase induction motors using f2833x,” in Texas Instruments, Oct. 2013.

無法下載圖示 全文公開日期 2025/08/11 (校內網路)
全文公開日期 2025/08/11 (校外網路)
全文公開日期 2025/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE