簡易檢索 / 詳目顯示

研究生: 葉君頤
Chun-Yi Yeh
論文名稱: 基於飛時測距感測器的建圖系統
Mapping System based on Time-of-Flight Sensors
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 黃文正
Wun-Jheng Huang
林昌鴻
Chang-Hong Lin
陳永耀
Yung-Yao Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 100
中文關鍵詞: 同步定位與建圖飛時測距感測器機器人作業系統粒子濾波器演算法擴展型卡爾曼濾波器
外文關鍵詞: Simultaneous Localization and Mapping(SLAM), Time-of-Flight sensors(TOF), Robot Operating System(ROS), Rao-Blackwellized Particle Filter algorithm (RBPF), Extended. Kalman Filter(EKF)
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 同步定位與建圖 (Simultaneous Localization and Mapping,SLAM)為近年來最熱門的話題,室內移動機器人可以透過感測器來獲得環境資訊,使機器人在環境中能得知自身的位置,並且建立室內地圖,來達到搬運貨物、打掃環境等功能,應用層面之廣泛在未來的科技上也令人期待。
    通常這樣的技術需搭配高準確度的感測器,如LiDAR,但此感測器價格昂貴,導致產品本身的成本提高,且LiDAR體積偏大,安裝時佔據產品一部分的空間。
    因此,本論文將架設一套低成本的驅動車系統,使用ROS系統搭配Gmapping並基於RBPF粒子濾波器演算法 (Rao-Blackwellized Particle Filter,RBPF)建立室內地圖。此系統使用八個ToF感測器 (Time of Flight,ToF)來獲取環境距離資訊,並利用EKF擴展型卡爾曼濾波器 (Extended Kalman filter,EKF)融合馬達編碼器的里程與IMU感測器(Inertial Measurement Unit,IMU)的數據,以更準確的評估驅動車的位置和建立環境地圖。
    此系統在一個靜態環境定點建圖和兩個動態環境即時建圖中進行驗證。靜態定點建圖部分,本系統建圖的結果和實際地圖相近。動態即時建圖部分,實驗結果顯示有使用擴展型卡爾曼濾波器的建圖結果優於沒有使用擴展型卡爾曼濾波器的建圖結果。


    Simultaneous Localization and Mapping (SLAM) is a hot topic in recent years. Indoor mobile robots obtain environmental information through sensors to know its position in the environment and to build indoor maps, and thus can be used to transport goods or clean the environment. More applications of the SLAM technology in the future is to be expected.
    The SLAM technology usually equips with high-accuracy sensors, such as LiDAR. However, these sensors are expensive and thus will increase the relative costs on providing. Moreover, the volume of LiDAR is so large that occupies a volume of product space.
    Therefore, in this paper, we set up a low-cost driving vehicle with the ROS system using Gmapping based on RBPF (Rao-Blackwellized Particle Filter, RBPF) algorithm to build an indoor map. This system uses eight ToF sensors (Time of Flight, ToF) to get the information on environmental distance, and uses the EKF (Extended Kalman filter, EKF) to fuse the encoder's mileage with the IMU sensor (Inertial Measurement Unit, IMU) data to more accurately estimate the positioning of the driving vehicle and to build an environmental map.
    This system is verified in a static environment with fixed-point mapping and two dynamic environments with real-time mapping. In the static fixed-point mapping, the result of the system’s mapping is similar to the real map. In the dynamic real-time mapping, the experimental results show that the mapping using the Extended Kalman Filter is better than the mapping not using the Extended Kalman Filter.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章、 緒論 1 1.1 前言 1 1.2 動機與目的 2 1.3 文獻探討 3 1.4 相關論文概述 4 1.5 論文架構 6 第二章、 研究背景 7 2.1 同步定位與建圖(Simultaneous Localization and Mapping,SLAM) 7 2.2 機器人作業系統 (Robot Operating System,ROS) 7 2.2.1 ROS介紹 7 2.2.2 ROS系統架構 8 2.2.3座標轉換 (Transform,TF) 9 2.3 Gmapping演算法 10 2.4 格點地圖 13 第三章、 系統架構 14 3.1 架設驅動車 14 3.1.1 Arduino 15 3.1.2 電機驅動板 15 3.1.3 馬達 17 3.2 感測器 17 3.2.1 距離感測器 17 3.2.2 馬達編碼器 22 3.2.3 慣性測量感測器 (Inertial Measurement Unit,IMU) 25 3.3 Raspberry Pi 3 33 3.4 建圖處理 34 3.4.1 卡爾曼濾波器 (Kalman Filter,KF) 35 3.4.2 擴展型卡爾曼濾波器 (Extended. Kalman Filter,EKF) 40 3.4.3 Robot pose ekf package應用 42 3.4.4 Gmapping packege應用 43 第四章、 實驗方法與結果討論 45 4.1 實驗設計流程 45 4.2 實驗一:靜態定點建立地圖 52 4.2.1 實驗環境A 53 4.3 實驗二: 動態即時建立地圖 58 4.3.1 實驗環境B 60 4.3.2 實驗環境C 69 第五章、 結論與未來展望 85 參考文獻 86

    [1] X. Niu, T. Yu, J. Tang, and L. Chang, “An Online Solution of LiDAR Scan Matching Aided Inertial Navigation System for Indoor Mobile Mapping,” Mob. Inf. Syst., vol. 2017, pp. 1–11, 2017.
    [2] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to concurrent mapping and localization for mobile robots,” Mach. Learn. Auton. Robot., vol. 5, no. 3, pp. 253–271, 1998.
    [3] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 1271–1278, 2016.
    [4] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, 2007.
    [5] “Simultaneous Localization and Mapping Technology Market Report 2024.” [Online]. Available: https://www.gminsights.com/industry-analysis/simultaneous-localization-and-mapping-slam-technology-market. [Accessed: 15-Jul-2020].
    [6] 林志平, “科技報導_ 應用於自駕車的光達(Lidar),” 科學月刊/科技報導. 2017.
    [7] O. H. Graven et al., “An autonomous indoor exploration robot rover and 3D modeling with photogrammetry,” 1st Int. ECTI North. Sect. Conf. Electr. Electron. Comput. Telecommun. Eng. ECTI-NCON 2018, pp. 44–47, Jun.2018.
    [8] “RPLIDAR-A1 360°Laser Range Scanner _ Domestic Laser Range Scanner|SLAMTEC.” [Online]. Available: https://www.slamtec.com/en/Lidar/A1. [Accessed: 15-Jul-2020].
    [9] “VL53L0X - World’s smallest Time-of-Flight (ToF) ranging sensor - STMicroelectronics.” [Online]. Available: https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html. [Accessed: 15-Jul-2020].
    [10] M. Maaref, J. Khalife, and Z. M. Kassas, “Lane-Level Localization and Mapping in GNSS-Challenged Environments by Fusing Lidar Data and Cellular Pseudoranges,” IEEE Trans. Intell. Veh., vol. 4, no. 1, pp. 73–89, 2018.
    [11] Y. Chen, Y. Wu, and H. Xing, “A complete solution for AGV SLAM integrated with navigation in modern warehouse environment,” Proc. - 2017 Chinese Autom. Congr. CAC 2017, vol. 2017-Janua, pp. 6418–6423, 2017.
    [12] T. Rakib and M. A. R. Sarkar, “Design and fabrication of an autonomous fire fighting robot with multisensor fire detection using PID controller,” 2016 5th Int. Conf. Informatics, Electron. Vision, ICIEV 2016, pp. 909–914, Nov.2016.
    [13] H. Zhang, W. Hong, and M. Chen, “A Path Planning Strategy for Intelligent Sweeping Robots,” Proc. 2019 IEEE Int. Conf. Mechatronics Autom. ICMA 2019, pp. 11–15, Aug.2019.
    [14] R. C. Smith and P. Cheeseman, “On the Representation and Estimation of Spatial Uncertainty,” Int. J. Rob. Res., vol. 5, no. 4, pp. 56–68, 1986.
    [15] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to concurrent mapping and localization for mobile robots,” Mach. Learn. Auton. Robot., vol. 5, no. 3, pp. 253–271, 1998.
    [16] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1147–1163, Oct.2015.
    [17] M. Rojas-Fernandez, D. Mujica-Vargas, M. Matuz-Cruz, and D. Lopez-Borreguero, “Performance comparison of 2D SLAM techniques available in ROS using a differential drive robot,” 2018 28th Int. Conf. Electron. Commun. Comput. CONIELECOMP 2018, vol. 2018-Janua, pp. 50–58, Mar.2018.
    [18] N. Yu and B. Zhang, “An Improved Hector SLAM Algorithm based on Information Fusion for Mobile Robot,” Proc. 2018 5th IEEE Int. Conf. Cloud Comput. Intell. Syst. CCIS 2018, pp. 279–284, Apr.2019.
    [19] H. Ismail and B. Balachandran, “Algorithm Fusion for Feature Extraction and Map Construction from SONAR Data,” IEEE Sens. J., vol. 15, no. 11, pp. 6460–6471, Nov.2015.
    [20] Y. Zhang et al., “Real-time indoor mapping for mobile robots with limited sensing,” 2010 IEEE 7th Int. Conf. Mob. Adhoc Sens. Syst. MASS 2010, pp. 636–641, 2010.
    [21] N. M. Yatim and N. Buniyamin, “Development of rao-blackwellized particle filter (RBPF) SLAM algorithm using low proximity infrared sensors,” Lect. Notes Electr. Eng., vol. 398, pp. 395–405, 2017.
    [22] S. Dogru and L. Marques, “Using Radar for Grid Based Indoor Mapping,” in 19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019, 2019.
    [23] A. L. Cretu-Sircu, “Assistive Localization and Autonomous Navigation for a Multi-Robot System Master Thesis,” 2020.
    [24] “ROS Wiki.” [Online]. Available: http://wiki.ros.org/. [Accessed: 17-Jul-2020].
    [25] K. Ellis, S. Godbole, S. Marshall, G. Lanckriet, J. Staudenmayer, and J. Kerr, “Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms,” Front. Public Heal., vol. 2, no. APR, Apr.2014.
    [26] “navigation/Tutorials/RobotSetup/TF - ROS Wiki.” [Online]. Available: http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF. [Accessed: 14-Dec-2020].
    [27] K. P. Murphy, “Bayesian Map Learning in Dynamic Environments,” NEURAL INFO. PROC. Syst. (NIPS, vol. 12, pp. 1015--1021, 2000.
    [28] K. P. Murphy, A. Doucet, and S. Russell, “Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks,” Seq. Monte Carlo Methods Pract., pp. 499–515, 2001.
    [29] K. Arras and W. Burgard, “Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping.”
    [30] Sequential Monte Carlo Methods in Practice. Springer New York, 2001.
    [31] M. C. Sneha, C. B. Diksha, M. W. Vaishali, and P. T. Resham, “Study of Different Inverter Topologies,” Int. J. Eng. Res. Electr. Electron. Eng., vol. 4, pp. 2395–2717, 2018.
    [32] “Chihai Motor CHR GM25 370 ABHL DC Magnetic Holzer Encoder Gear Motor 6.0V 12.0V 24.0v Belt mounting flange|encoder gear motor|gear motorgear encoder - AliExpress.” [Online]. Available: https://www.aliexpress.com/item/32825873010.html. [Accessed: 29-Dec-2020].
    [33] H. Triebel, “Analysis and Mathematical Physics,” p. 103, 1986.
    [34] M. I. Afandi, H. Adinanta, A. Setiono, Qomaruddin, and B. Widiyatmoko, “High resolution extensometer based on optical encoder for measurement of small landslide displacements,” J. Phys. Conf. Ser., vol. 985, no. 1, Mar.2018.
    [35] K. Lee, C. Jung, and W. Chung, “Accurate calibration of kinematic parameters for two wheel differential mobile robots,” J. Mech. Sci. Technol., vol. 25, no. 6, pp. 1603–1611, Jun.2011.
    [36] “MPU-6050 | TDK.” [Online]. Available: https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/. [Accessed: 14-Dec-2020].
    [37] R. G. Valenti, I. Dryanovski, and J. Xiao, “Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs,” Sensors, vol. 15, no. 8, pp. 19302–19330, Aug.2015.
    [38] R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Fluids Eng. Trans. ASME, vol. 82, no. 1, pp. 35–45, Mar.1960.
    [39] “A geometric interpretation of the covariance matrix.” [Online]. Available: https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/. [Accessed: 04-Feb-2021].
    [40] C. Stachniss, “Robot Mapping Extended Kalman Filter.”
    [41] Eugene F. Krause, “Taxicab Geometry: An Adventure in Non-Euclidean Geometry,” 1986.
    [42] “Polygon Coordinates and Areas – The Math Doctors.” [Online]. Available: https://www.themathdoctors.org/polygon-coordinates-and-areas/. [Accessed: 04-Feb-2021].

    無法下載圖示 全文公開日期 2026/02/08 (校內網路)
    全文公開日期 2026/02/08 (校外網路)
    全文公開日期 2026/02/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE