簡易檢索 / 詳目顯示

研究生: 陳國淵
Kuo-Yuan Chen
論文名稱: 氧電漿處理二碲化鉬pn二極體之光電導特性研究
Study of photoconductivity on MoTe2 pn junction diode fabricated via oxygen plasma treatment
指導教授: 林保宏
Pao-Hung Lin
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 二碲化鉬電漿處理pn二極體光感測器
外文關鍵詞: MoTe2, plasma treatment, pn diode, photodetector
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來二維過渡金屬硫屬化合物逐漸成為大家主要的研究重點,它擁有良好的光電特性,如光電導率與載子遷移率等,二碲化鉬屬於二維過渡金屬硫屬化合物,其具有極佳的光響應度以及載子遷移率。本實驗成功
地利用化學氣相傳導法成長高品質之二碲化鉬(MoTe2)層狀晶體,並以機械剝離法將其厚度撕薄至 10 m 以下,透過氧電漿處理改變其半導體特性,經電荷中性點量測後,確認 MoTe2 成功由 n 型半導體材料轉為 p 型半導體材料。並利用掃描式電子顯微鏡,拉曼光譜儀,X 射線光電子能譜儀和 X 射線能量散佈光譜儀對 MoTe2 進行特性分析,確認氧摻入 MoTe2之比例及鍵結結構,我們使用絕緣遮罩定義出電漿處理區域,將一半的MoTe2 進行電漿處理,製作出同質 pn 接面二極體,在-5 V 至+5 V 的偏壓下量測 I-V 特性曲線,並將此二極體應用於半波整流電路,在輸入電壓 10Vp-p,工作頻率 1-1k Hz 內有良好的整流效果。在光學特性量測的方面,我們分別將本質 MoTe2,經氧電漿處理之 MoTe2 和 MoTe2 二極體,進行光電流,光電導率及歸一化光響應度的量測,結果顯示 MoTe2 二極體相較於其他兩種樣品,光電導率及光響應度皆有顯著提升,由於二極體在逆向偏壓下會使空乏區變寬,內建電場增強,進而造成空乏區內光電流上升。此研究為MoTe2 的光電元件,提供了一種低成本,高效率及非危險性的方法。


Molybdenum ditelluride (MoTe2) is an n-type semiconductor with fabulous
electrical and optical properties, such as carrier mobility, photoconductivity, and
photoresponsivity. In this thesis, we used chemical vapor transport (CVT) to
synthesize MoTe2 layered crystals. In order to control the thickness of MoTe2, we
used mechanical exfoliation to make MoTe2 thinner than 10 m. Through the
oxygen plasma treatment, we modified the semiconductor characteristics of MoTe2
from n-type to p-type, and it was confirmed by the charge neutral point
measurement. To make sure that the oxygen plasma was effectively doped into the
MoTe2 flake, we analyzed the MoTe2 properties by Raman spectrometer, scanning
electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and
X-ray photoelectron spectroscopy (XPS). In order to fabricate the MoTe2
homojunction diode, we used glass mask to define the plasma treated area on the
MoTe2 flake, and the MoTe2 flake was treated with oxygen plasma for 30 minutes.
The I-V characteristic of the MoTe2 homojunction diode was measured by applied
voltage ranging within -5 to +5 V, and the result showed that the MoTe2 diode
which treated with 110 W has the best pn characteristics. The MoTe2 diode also
showed outstanding rectifying behavior under 1k Hz applied with 5 V. In the
optical measurement, we fabricated the pn-MoTe2 diode, pristine MoTe2
photodetector, and fully doped MoTe2 photodetector. We measured the
photocurrent, photoconductivity, and photoresponsivity of 3 types of samples. Due
to the photovoltaic effect, the pn-MoTe2 diode exhibited relatively well
performance than two other photodetectors. Overall, this study provides a low-cost,
high-efficiency, and non-hazardous method for MoTe2 optoelectronic components.

中文摘要.....................................................................................................I Abstract…………………………………………………………………..II 致謝……………………………………………………………………...III 目錄……………………………………………………………………..IV 圖索引………………………………………………………………….VII 表索引…………………………………………………………………..XI Chapter 1 緒論........................................................................................... 1 1.1. 研究背景與動機 .............................................................................. 2 1.2. 過渡金屬硫屬化合物...................................................................... 3 Molybdenum ditelluride (MoTe2) ......................................... 5 1.3. TMDCs 的製備................................................................................ 6 化學氣相傳導法................................................................... 6 機械剝離法........................................................................... 8 1.4. pn 接面二極體 ................................................................................. 9 背景....................................................................................... 9 工作原理............................................................................. 10 理想因子............................................................................. 11 二維材料之 pn 接面二極體相關應用............................... 12 1.5. 光感測器 ........................................................................................ 13 1.6. 光電效應 ........................................................................................ 14 外部光電效應..................................................................... 14 光電導效應......................................................................... 15 光熱電效應......................................................................... 16 1.7. 光電導率 ........................................................................................ 17 V 1.8. 光響應度與量子轉換效率............................................................ 18 1.9. 歸一化光電流增益........................................................................ 19 1.10. 光電二極體 ................................................................................ 20 Chapter 2 實驗方法與設備..................................................................... 21 2.1. 實驗流程 ........................................................................................ 21 MoTe2 的製備...................................................................... 22 氧電漿處理......................................................................... 24 2.2. 分析量測儀器 ................................................................................ 26 掃描式電子顯微鏡............................................................. 26 拉曼光譜儀......................................................................... 27 X 射線光電子能譜儀......................................................... 29 X 射線能量散佈光譜分析儀............................................. 30 2.3. 電性量測 ........................................................................................ 31 電荷中性點量測................................................................. 31 pn 二極體量測.................................................................... 32 2.4. 半波整流電路 ................................................................................ 34 2.5. 光電特性量測 ................................................................................ 35 Chapter 3 結果與討論............................................................................. 37 3.1. 掃描式電子顯微鏡分析................................................................ 37 3.2. 拉曼光譜圖 .................................................................................... 38 3.3. X 射線光電子能譜分析 ................................................................ 40 3.4. X 射線能量散佈光譜分析 ............................................................ 44 3.5. 電荷中性點量測 ............................................................................ 45 3.6. 二極體特性 .................................................................................... 47 二極體電流-電壓特性曲線................................................ 47 VI 3.7. 半波整流 ........................................................................................ 50 3.8. 光電特性量測 ................................................................................ 52 光電流量測......................................................................... 52 光電導率............................................................................. 58 歸一化光響應度................................................................. 62 3.9. 光學特性分析 ................................................................................ 66 Chapter 4 結論......................................................................................... 70 參考文獻………………………………………………………………...71

[1] S. Chen and G. Shi, “Two‐dimensional materials for halide perovskite‐based
optoelectronic devices,” Advanced Materials, vol. 29, no. 24, p. 1605448,
2017.
[2] J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li,
S. Thakur, M. Ashrafi, and K. Mccoubrey, “Photonics and optoelectronics
of two-dimensional materials beyond graphene,” Nanotechnology, vol. 27,
no. 46, p. 462001, 2016.
[3] H. Wang, S. Li, R. Ai, H. Huang, L. Shao, and J. Wang, “Plasmonically
enabled two-dimensional material-based optoelectronic devices,”
Nanoscale, vol. 12, no. 15, pp. 8095-8108, 2020.
[4] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr, S. T. Pantelides, and
K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer
MoS2,” Nano Letters, vol. 13, no. 8, pp. 3626-3630, 2013.
[5] I. Omkaram, Y. K. Hong, and S. Kim, “Transition metal dichalcogenide
photodetectors,” Two-Dimensional Materials for Photodetector, 2018.
[6] S. A. Pawar, D. Kim, R. Lee, S. W. Kang, D. S. Patil, T. W. Kim, and J. C.
Shin, “Efficient supercapacitor based on polymorphic structure of 1T′-
Mo6Te6 nanoplates and few-atomic-layered 2H-MoTe2: A layer by layer
study on nickel foam,” Chemical Engineering Journal, vol. 371, pp. 182-
192, 2019.
[7] L. Liu, N. Xu, Y. Zhang, P. Zhao, H. Chen, and S. Deng, “Van der Waals
bipolar junction transistor using vertically stacked two‐dimensional atomic
crystals,” Advanced Functional Materials, vol. 29, no. 17, p. 1807893, 2019.
72
[8] A. M. Afzal, S. Mumtaz, M. Z. Iqbal, M. W. Iqbal, A. Manzoor, G. Dastgeer,
M. J. Iqbal, Y. Javed, R. Khan, and N. A. Shad, “Fast and high
photoresponsivity gallium telluride/hafnium selenide van der Waals
heterostructure photodiode,” Journal of Materials Chemistry C, vol. 9, no.
22, pp. 7110-7118, 2021.
[9] S. Yang, L. Pi, L. Li, K. Liu, K. Pei, W. Han, F. Wang, F. Zhuge, H. Li, and
G. Cheng, “2D Cu9S5/PtS2/WSe2 double heterojunction bipolar transistor
with high current gain,” Advanced Materials, vol. 33, no. 52, p. 2106537,
2021.
[10] Z. Huang, T. Wu, S. Kong, Q. L. Meng, W. Zhuang, P. Jiang, and X. Bao,
“Enhancement of anisotropic thermoelectric performance of tungsten
disulfide by titanium doping,” Journal of Materials Chemistry A, vol. 4, no.
26, pp. 10159-10165, 2016.
[11] H. C. Chang, Y. J. Huang, H. Y. Chang, W. J. Su, Y. T. Shih, Y. S. Huang,
and K. Y. Lee, “Oxygen adsorption effect on nitrogen-doped graphene
electrical properties,” Applied Physics Express, vol. 7, no. 5, p. 055101,
2014.
[12] W. Li, J. Y. Ke, Y. X. Ou-Yang, Y. X. Lin, C. H. Ho, K. Y. Lee, S. Fujii,
S.-i. Honda, H. Okado, and M. Naitoh, “Molybdenum disulfide
homogeneous junction diode fabrication and rectification characteristics,”
Japanese Journal of Applied Physics, vol. 61, no. 8, p. 086504, 2022.
[13] A. D. Scaccabarozzi, A. Basu, F. Aniés, J. Liu, O. Zapata-Arteaga, R.
Warren, Y. Firdaus, M. I. Nugraha, Y. Lin, and M. Campoy-Quiles,
“Doping approaches for organic semiconductors,” Chemical Reviews, vol.
122, no. 4, pp. 4420-4492, 2021.
73
[14] V. Arkhipov, E. Emelianova, P. Heremans, and H. Bässler, “Analytic model
of carrier mobility in doped disordered organic semiconductors,” Physical
Review B, vol. 72, no. 23, p. 235202, 2005.
[15] C. L. Hsu, and S. J. Chang, “Doped ZnO 1D nanostructures: synthesis,
properties, and photodetector application,” Small, vol. 10, no. 22, pp. 4562-
4585, 2014.
[16] A. Kuc, T. Heine, and A. Kis, “Electronic properties of transition-metal
dichalcogenides,” MRS Bulletin, vol. 40, no. 7, pp. 577-584, 2015.
[17] W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly
efficient gate-tunable photocurrent generation in vertical heterostructures of
layered materials,” Nature Nanotechnology, vol. 8, no. 12, pp. 952-958,
2013.
[18] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F.
Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Letters,
vol. 10, no. 4, pp. 1271-1275, 2010.
[19] A. Tubtimtae, M. W. Lee, and G. J. Wang, “Ag2Se quantum-dot sensitized
solar cells for full solar spectrum light harvesting,” Journal of Power
Sources, vol. 196, no. 15, pp. 6603-6608, 2011.
[20] C. Ko, Y. Lee, Y. Chen, J. Suh, D. Fu, A. Suslu, S. Lee, J. D. Clarkson, H.
S. Choe, and S. Tongay, “Ferroelectrically gated atomically thin transition‐
metal dichalcogenides as nonvolatile memory,” Advanced Materials, vol.
28, no. 15, pp. 2923-2930, 2016.
[21] K. M. Freedy, and S. J. McDonnell, “Contacts for molybdenum disulfide:
interface chemistry and thermal stability,” Materials, vol. 13, no. 3, p. 693,
2020.
74
[22] R. Sankar, G. Narsinga Rao, I. P. Muthuselvam, C. Butler, N. Kumar, G.
Senthil Murugan, C. Shekhar, T. R. Chang, C. Y. Wen, and C. W. Chen,
“Polymorphic layered MoTe2 from semiconductor, topological insulator, to
weyl semimetal,” Chemistry of Materials, vol. 29, no. 2, pp. 699-707, 2017.
[23] C. Ruppert, B. Aslan, and T. F. Heinz, “Optical properties and band gap of
single-and few-layer MoTe2 crystals,” Nano Letters, vol. 14, no. 11, pp.
6231-6236, 2014.
[24] Y. F. Lin, Y. Xu, S. T. Wang, S. L. Li, M. Yamamoto, A. Aparecido‐Ferreira,
W. Li, H. Sun, S. Nakaharai, and W. B. Jian, “Ambipolar MoTe2 transistors
and their applications in logic circuits,” Advanced Materials, vol. 26, no. 20,
pp. 3263-3269, 2014.
[25] S. Larentis, B. Fallahazad, and E. Tutuc, “Field-effect transistors and
intrinsic mobility in ultra-thin MoSe2 layers,” Applied Physics Letters, vol.
101, no. 22, p. 223104, 2012.
[26] D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, and A. Kis,
“Electrical transport properties of single-layer WS2,” ACS Nano, vol. 8, no.
8, pp. 8174-8181, 2014.
[27] N. R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B. H. Moon, H.
Terrones, M. Terrones, and L. Balicas, “Field-effect transistors based on
few-layered α-MoTe2,” ACS Nano, vol. 8, no. 6, pp. 5911-5920, 2014.
[28] B. Wang, X. Wang, P. Wang, A. Kuang, T. Zhou, H. Yuan, and H. Chen,
“Bilayer MoTe2/XS2 (X= Hf, Sn, Zr) heterostructures with efficient carrier
separation and light absorption for photocatalytic water splitting into
hydrogen,” Applied Surface Science, vol. 544, p. 148842, 2021.
75
[29] T. J. Octon, V. K. Nagareddy, S. Russo, M. F. Craciun, and C. D. Wright,
“Fast high‐responsivity few‐layer MoTe2 photodetectors,” Advanced
Optical Materials, vol. 4, no. 11, pp. 1750-1754, 2016.
[30] S. Aftab, H. M. S. Ajmal, E. Elahi, H. M. Mansoor Ul Haque, Samiya, M.
W. Iqbal, J. Aziz, S. Yousuf, M. Z. Iqbal, and M. A. Shehzad, “Lateral PIN
(p-MoTe2/Intrinsic-MoTe2/n-MoTe2) homojunction photodiodes,” ACS
Applied Nano Materials, vol. 5, no. 5, pp. 6455-6462, 2022.
[31] M. Moustafa, and T. AlZoubi, “Effect of the n-MoTe2 interfacial layer in
cadmium telluride solar cells using SCAPS,” Optik, vol. 170, pp. 101-105,
2018.
[32] R. Maiti, C. Patil, M. Saadi, T. Xie, J. Azadani, B. Uluutku, R. Amin, A.
Briggs, M. Miscuglio, and D. Van Thourhout, “Strain-engineered highresponsivity MoTe2 photodetector for silicon photonic integrated circuits,”
Nature Photonics, vol. 14, no. 9, pp. 578-584, 2020.
[33] M. W. Iqbal, H. Ateeq, A. Marriam, M. Manzoor, S. Aftab, S. Azam, E.
Elahi, and M. M. Faisal, “Experimental and theoretical insights into
electronic properties of oxygen-doped MoTe2 field effect transistor,”
Microelectronic Engineering, vol. 265, p. 111885, 2022.
[34] K. Bi, Q. Wan, Z. Shu, G. Shao, Y. Jin, M. Zhu, J. Lin, H. Liu, H. Liu, and
Y. Chen, “High-performance lateral MoS2-MoO3 heterojunction
phototransistor enabled by in-situ chemical-oxidation,” Science China
Materials, vol. 63, pp. 1076-1084, 2020.
[35] A. Sharma, M. Tomar, and V. Gupta, “A low temperature operated NO2 gas
sensor based on TeO2/SnO2 p–n heterointerface,” Sensors and Actuators B:
Chemical, vol. 176, pp. 875-883, 2013.
76
[36] G. Stan, C. V. Ciobanu, S. R. J. Likith, A. Rani, S. Zhang, C. A. Hacker, S.
Krylyuk, and A. V. Davydov, “Doping of MoTe2 via surface charge transfer
in air,” ACS Applied Materials & Interfaces, vol. 12, no. 15, pp. 18182-
18193, 2020.
[37] Y. Deng, X. Zhao, C. Zhu, P. Li, R. Duan, G. Liu, and Z. Liu, “MoTe2:
semiconductor or semimetal?,” ACS Nano, vol. 15, no. 8, pp. 12465-12474,
2021.
[38] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in
atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669,
2004.
[39] W. Shockley, “The theory of p‐n junctions in semiconductors and p‐n
junction transistors,” Bell System Technical Journal, vol. 28, no. 3, pp. 435-
489, 1949.
[40] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles:
McGraw-hill, 2003.
[41] S. Chaudhary, Principles of Electronics: Laxmi Publications, 2015.
[42] D. Kufer and G. Konstantatos, “Highly sensitive, encapsulated MoS2
photodetector with gate controllable gain and speed,” Nano Letters, vol. 15,
no. 11, pp. 7307-7313, 2015.
[43] Y. Liu, C. Liu, X. Wang, L. He, X. Wan, Y. Xu, Y. Shi, R. Zhang, and F.
Wang, “Photoresponsivity of an all-semimetal heterostructure based on
graphene and WTe2,” Scientific Reports, vol. 8, no. 1, p. 12840, 2018.
77
[44] M. F. Khan, S. Rehman, I. Akhtar, S. Aftab, H. M. S. Ajmal, W. Khan, D.-
k. Kim, and J. Eom, “High mobility ReSe2 field effect transistors: Schottkybarrier-height-dependent photoresponsivity and broadband light detection
with Co decoration,” 2D Materials, vol. 7, no. 1, p. 015010, 2019.
[45] P. Lin, L. Zhu, D. Li, L. Xu, C. Pan, and Z. Wang, “Piezo‐phototronic effect
for enhanced flexible MoS2/WSe2 Van der Waals photodiodes,” Advanced
Functional Materials, vol. 28, no. 35, p. 1802849, 2018.
[46] S. Dewan, M. Tomar, R. Tandon, and V. Gupta, “Zn doping induced
conductivity transformation in NiO films for realization of pn homo junction
diode,” Journal of Applied Physics, vol. 121, no. 21, p. 215307, 2017.
[47]J. Nriagu, “Zinc toxicity in humans,” School of Public Health, University of
Michigan, pp. 1-7, 2007.
[48] S. McKagan, W. Handley, K. Perkins, and C. Wieman, “A research-based
curriculum for teaching the photoelectric effect,” American Journal of
Physics, vol. 77, no. 1, pp. 87-94, 2009.
[49] E. Condon, “Note on the external photoelectric effect of semi-conductors,”
Physical Review, vol. 54, no. 12, p. 1089, 1938.
[50] R. Zitter, “Role of traps in the photoelectromagnetic and photoconductive
effects,” Physical Review, vol. 112, no. 3, p. 852, 1958.
[51] D. Basko, “A photothermoelectric effect in graphene,” Science, vol. 334, no.
6056, pp. 610-611, 2011.
[52] B. Liu, C. Zhao, X. Chen, L. Zhang, Y. Li, H. Yan, and Y. Zhang, “Selfpowered and fast photodetector based on graphene/MoSe2/Au
heterojunction,” Superlattices and Microstructures, vol. 130, pp. 87-92,
2019.
78
[53] Z. Lu, Y. Xu, Y. Yu, K. Xu, J. Mao, G. Xu, Y. Ma, D. Wu, and J. Jie,
“Ultrahigh speed and broadband few‐layer MoTe2/Si 2D–3D
heterojunction‐based photodiodes fabricated by pulsed laser deposition,”
Advanced Functional Materials, vol. 30, no. 9, p. 1907951, 2020.
[54] H.-M. Li, D. Lee, D. Qu, X. Liu, J. Ryu, A. Seabaugh, and W. J. Yoo,
“Ultimate thin vertical p–n junction composed of two-dimensional layered
molybdenum disulfide,” Nature Communications, vol. 6, no. 1, p. 6564,
2015.
[55]J. Chen, Q. Wang, Y. Sheng, G. Cao, P. Yang, Y. Shan, F. Liao, Z.
Muhammad, W. Bao, and L. Hu, “High-performance WSe2 photodetector
based on a laser-induced p–n junction,” ACS Applied Materials & Interfaces,
vol. 11, no. 46, pp. 43330-43336, 2019.
[56] M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and
A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in
single-layer MoS2,” Nano Letters, vol. 13, no. 2, pp. 358-363, 2013.
[57]J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, “Plasmonic Schottky
photodetector with metal stripe embedded into semiconductor and with a
CMOS-compatible titanium nitride,” Scientific Reports, vol. 9, no. 1, p.
6048, 2019.
[58] Q. Wang, J. Chen, Y. Zhang, L. Hu, R. Liu, C. Cong, and Z. J. Qiu, “Precise
layer control of MoTe2 by ozone treatment,” Nanomaterials, vol. 9, no. 5, p.
756, 2019.
[59] M. Yamamoto, S. T. Wang, M. Ni, Y. F. Lin, S. L. Li, S. Aikawa, W. B.
Jian, K. Ueno, K. Wakabayashi, and K. Tsukagoshi, “Strong enhancement
79
of Raman scattering from a bulk-inactive vibrational mode in few-layer
MoTe2,” ACS Nano, vol. 8, no. 4, pp. 3895-3903, 2014.
[60] S. I. Khondaker, and M. R. Islam, “Bandgap engineering of MoS2 flakes via
oxygen plasma: a layer dependent study,” The Journal of Physical
Chemistry C, vol. 120, no. 25, pp. 13801-13806, 2016.
[61] X. Zheng, Y. Wei, C. Deng, H. Huang, Y. Yu, G. Wang, G. Peng, Z. Zhu,
Y. Zhang, and T. Jiang, “Controlled layer-by-layer oxidation of MoTe2 via
O3 exposure,” ACS Applied Materials & Interfaces, vol. 10, no. 36, pp.
30045-30050, 2018.
[62] B. Sirota, N. Glavin, S. Krylyuk, A. V. Davydov, and A. A. Voevodin,
“Hexagonal MoTe2 with amorphous BN passivation layer for improved
oxidation resistance and endurance of 2D field effect transistors,” Scientific
Reports, vol. 8, no. 1, p. 8668, 2018.
[63] Y. M. Chang, S. H. Yang, C. Y. Lin, C. H. Chen, C. H. Lien, W. B. Jian, K.
Ueno, Y. W. Suen, K. Tsukagoshi, and Y. F. Lin, “Reversible and precisely
controllable p/n‐Type doping of MoTe2 transistors through electrothermal
doping,” Advanced Materials, vol. 30, no. 13, p. 1706995, 2018.
[64] T. Ouyang, X. Wang, S. Liu, H. Chen, and S. Deng, “A complete twodimensional avalanche photodiode based on MoTe2−WS2−MoTe2
heterojunctions with ultralow dark current,” Frontiers in Materials, vol. 8,
p. 736180, 2021.
[65] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller,
“Mechanisms of photoconductivity in atomically thin MoS2,” Nano Letters,
vol. 14, no. 11, pp. 6165-6170, 2014.
80
[66] C. K. Dass, M. A. Khan, G. Clark, J. A. Simon, R. Gibson, S. Mou, X. Xu,
M. N. Leuenberger, and J. R. Hendrickson, “Ultra‐long lifetimes of single
quantum emitters in monolayer WSe2/hBN heterostructures,” Advanced
Quantum Technologies, vol. 2, no. 5-6, p. 1900022, 2019.
[67] Z. Lu, Y. Xu, Y. Yu, K. Xu, J. Mao, G. Xu, Y. Ma, D. Wu, and J. Jie,
“Ultrahigh speed and broadband few‐layer MoTe2/Si 2D–3D
heterojunction‐based photodiodes fabricated by pulsed laser deposition,”
Advanced Functional Materials, vol. 30, no. 9, p. 1907951, 2020.
[68]J. Ahn, J.-H. Kang, J. Kyhm, H. T. Choi, M. Kim, D.-H. Ahn, D.-Y. Kim,
I.-H. Ahn, J. B. Park, and S. Park, “Self-powered visible–invisible
multiband detection and imaging achieved using high-performance 2D
MoTe2/MoS2 semivertical heterojunction photodiodes,” ACS Applied
Materials & Interfaces, vol. 12, no. 9, pp. 10858-10866, 2020.
[69] I. G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski,
and A. F. Morpurgo, “Indirect-to-direct band gap crossover in few-layer
MoTe2,” Nano Letters, vol. 15, no. 4, pp. 2336-2342, 2015.
[70] R. X. Hu, X.-L. Ma, C. H. An, and J. Liu, “Visible-to-near-infrared
photodetector based on graphene–MoTe2–graphere heterostructure,”
Chinese Physics B, vol. 28, no. 11, p. 117802, 2019.
[71] M. Gholipoor, N. Solhtalab, and M. H. Mohammadi, “High-performance
parallel tandem MoTe2/perovskite solar cell based on reduced graphene
oxide as hole transport layer,” Scientific Reports, vol. 12, no. 1, p. 20455,
2022.
[72] K. Liu, B. Liu, S. Wang, Z. Wei, T. Wu, C. Cong, Z. Shen, X. Sun, and H.
Sun, “Influence of thin metal nanolayers on the photodetective properties of
81
ZnO thin films,” Journal of Applied Physics, vol. 106, no. 8, p. 083110,
2009.
[73]J. Ahn, J.-H. Kyhm, H. K. Kang, N. Kwon, H.-K. Kim, S. Park, and D. K.
Hwang, “2D MoTe2/ReS2 van der Waals heterostructure for highperformance and linear polarization-sensitive photodetector,” ACS
Photonics, vol. 8, no. 9, pp. 2650-2658, 2021.
[74] H. Wang, V. J. Sorger, and H. Dalir, "Plasmonic slot waveguide-integrated
MoTe2 photodetector with 30-GHz bandwidth at telecom wavelength." pp.
1-2.
[75] Y. Li, C.-Y. Xu, J.-Y. Wang, and L. Zhen, “Photodiode-like behavior and
excellent photoresponse of vertical Si/monolayer MoS2 heterostructures,”
Scientific Reports, vol. 4, no. 1, pp. 1-8, 2014.
[76] L. Lv, F. Zhuge, F. Xie, X. Xiong, Q. Zhang, N. Zhang, Y. Huang, and T.
Zhai, “Reconfigurable two-dimensional optoelectronic devices enabled by
local ferroelectric polarization,” Nature Communications, vol. 10, no. 1, p.
3331, 2019.
[77]J. Chen, W. Ouyang, W. Yang, J. H. He, and X. Fang, “Recent progress of
heterojunction ultraviolet photodetectors: materials, integrations, and
applications,” Advanced Functional Materials, vol. 30, no. 16, p. 1909909,
2020.
[78] S. Li, W. Xu, L. Meng, W. Tian, and L. Li, “Recent progress on
semiconductor heterojunction‐based photoanodes for photoelectrochemical
water splitting,” Small Science, vol. 2, no. 5, p. 2100112, 2022.

無法下載圖示 全文公開日期 2028/07/24 (校內網路)
全文公開日期 2028/07/24 (校外網路)
全文公開日期 2028/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE