簡易檢索 / 詳目顯示

研究生: 徐士傑
Shih-Chieh Hsu
論文名稱: 可橫向飛躍握枝仿生機器人設計與實作
Development of a Biomimetic Brachiation Robot for Transverse-Jumping
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃緒哲
Shiuh-Jer Huang
郭重顯
Chung-Hsien Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 120
中文關鍵詞: 仿生機器人橫向跳躍壁面越障
外文關鍵詞: Climbing robot, Biomimetic robot, Brachiation robot
相關次數: 點閱:113下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由日本知名節目「極限體能王」中所獲得之靈感,本研究將設計製作一創新仿生式機器人,重現節目中之動作,期望未來可應用於壁面移動型機器人中,以增加此類機器人的機動性。於該關卡中選手在闖盪該關卡時,因無法用單手抓到較遠之桿子,故會在當前的桿子上,擺盪身體來增加慣性力,待慣性力H足夠後再一躍而出,此動作是橫向的長距離移動,且好似於牆面上跳躍,且此,因此本研究將其稱作「橫向跳躍」。本研究所探討之動作,原理相當類似猿猴在樹與樹枝間的移動方式,當樹枝較遠,猿猴亦會在當前枝椏擺盪一段時間後,再鬆手飛躍,以達到長距離的移動目的。若要完成橫向跳躍這一動作,需探討三個重要的課題,其一,如何擺盪會使機器人獲得最大的慣性力,機器人放手時會較高的飛行速度;其二,何時鬆手可使機器人有好的脫離角度,機器人方手時會有較好的飛行距離;其三,如何穩定滯空時機器人的姿態,使機器人可以穩定的抓到較遠的桿子。在仿生機器人設計上,本研究將會利用ADAMS仿真模擬軟體確認機器人機構之可行性,及尋找機器人最佳的擺盪方式, 並和動力學推導之機器人擺盪頻率相互比較,以確認數值之準確性,最後,將會利用實際製作之機器人比較理論值之差異,並驗證所發展之機器人效能。


    This thesis presents an innovative bio-inspired robot design which is capable of performing transverse-jumping motion as shown in a famous Japanese entertainment TV show called “Sasuke.” The goal of this research is to explore the maneuverability of climbing robots and its applications. The primary challenges of such kind of robot design can be interpreted by watching this unique jumping motion from the TV show. In one specific mission, the athletes are asked to move between two rails which are separated by a distanced gap. Because the gap distance is too far for athletes to hold the other rail by solely using one arm, they need to swing their bodies for producing enough inertial forces and then hold the other rail followed by such special jumping motion. In the study this movement is referred to as “Transverse Jumping” due to its transversely overpassing the gap in the air. The idea of this movement is similar to the swinging motion of an ape but shows a different locomotion style. To let the designed robot capable of this jumping, there are three key issues to be considered. The first issue includes investigation of proper swinging motion so as to generate enough inertial forces and flying speed after releasing the hand. Secondly, the optimal hand-releasing timing is also an important factor determining the flying distance. Moreover, the airborne robot posture should be properly designed and adjusted to assure that the robot can correctly hold the other distanced rail after the flying phase. This study applies ADAMS software to verify the designed mechanism and analyze the robot swinging frequency for jumping. The determined swinging frequency is verified by the calculated results using a simplified robot dynamic model. In experiments, two motor control strategies are proposed to enlarge the swing angle of the robot. The jumping experiments demonstrate the feasibility of the proposed robot design.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XIV 第一章 緒論 1 第二章 系統概念介紹及構想設計 10 2.1 系統設計需求 10 2.2 攀爬者姿態分析 11 2.3 系統作動流程說明及設計概念 14 第三章 系統架構 17 3.2 仿生型攀爬機器人設計細節 19 3.2.2 仿生型攀爬機器人手臂(Arm) 20 3.2.3 仿生型攀爬機器人夾爪(Hand)及手指(Finger) 22 3.2.4 仿生型攀爬機器人本體(Body) 23 3.2.5 仿生型攀爬機器人尾巴(Tail) 25 3.3 ARDUINO DUE 控制板 26 3.4 L298N 直流馬達控制模組 27 3.5 HCTL-2032晶片電路 29 3.6 馬達規格及選用 31 3.7 氣動夾爪規格 32 第四章 機器人姿態分析 34 4.1 機器人自然擺盪頻率推導 34 4.2 機器人擺盪動態方程式推導 38 第五章 CAE軟體模擬 42 5.1 ADAMS概述 43 5.2 ADAMS模型建模 46 5.3 ADAMS模擬機器人擺盪 48 5.3.1 自由擺盪模擬環境條件設置結果討論 51 5.3.2 尾巴擺盪頻率吻合系統自然頻率 53 第六章 實驗結果 56 6.1 測試環境 56 6.2 單純給予尾巴命令 58 6.3 肩膀馬達輔助 61 6.3.1 策略一 62 6.3.2 策略二 85 6.4 機器人側向跳躍 107 第七章 結論及未來目標 114 7.1 結論 114 7.2 未來目標 116 參考文獻 118

    [1] Werner Nachtigall, Bionik: Grundlagen und Beispiele für
    Ingenieure und Naturwissenschaftler, 2nd ed. (Springer-Verlag
    Berlin, Heidelberg, 2013), ISBN 9783642189968.
    [2] 謝昌佑, “機器蛇攀爬階梯之步態規劃與分析,” 國立台灣大學生物產業機電工程學研究
    所, 2007.
    [3] Zheng Li, Yong Zhong, and Ruxu Du, “A Novel Underactuated Wire-
    Driven Robot Fish with Vector Propulsion,” IEEE/RSJ International
    Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan
    (Nov 3-7, 2013), pp. 941-946.
    [4] Daniel Santos, Barrett Heyneman, Sangbae Kem, Noe Esparza, and Mark
    R. Cutkosky, “Gecko-Inspired Climbing Behaviors on Vertical and
    Overhanging Surfaces,” IEEE International Conference on Robotics and
    Automation, Pasadena, CA, USA (May, 2008), pp. 1125-1131.
    [5] Couceiro, M. S., Figueiredo, C. M., Ferreira, N. M. F. and Machado,
    J. A. T., “The Dynamic Modeling of a Bird Robot,” Proceedings of the
    9th Conference on Autonomous Robot Systems and Competitions -
    Robotica, Castelo Branco, Portugal (May 7, 2009).
    [6] B.S.K.K Ibrahim, and Ahmed M.A.Zargoun, “Modelling and Control of
    SCARA manipulator,” Procedia Computer Science 42, 106-113 (2014).
    [7] Jonathan Bohren, Radu Bogdan Rusu, E. Gil Jones, Eitan Marder-
    Eppstein, Caroline Pantofaru, Melonee Wise, Lorenz Mぴosenlechner,
    Wim Meeussen, and Stefan Holzer, “Towards Autonomous Robotic
    Butlers: Lessons Learned with the PR2,” IEEE International
    Conference on Robotics and Automation, Shanghai, China (May 9-13,
    2011), pp. 5568-5575.
    [8] F. Cid, J.A. Prado, P. Manzano, P. Bustos and P. Nunez., "Imitation
    System for Humanoid Robotics Heads", Journal of Physical Agents
    7(1), 22-29 (Jan, 2013).
    [9] 百貨公司機器接代員, Available from:
    http://www.bbc.com/news/technology-32391075
    [10] 唱跳型機器人, Available from:
    http://www.dailymail.co.uk/sciencetech/article-1321260/The-new-
    singing-dancing-robot-operated-using-just-mouse.html
    [11] 郭凡瑋, “人形機器人基於模仿之動作記憶與重現,” 國立中山大學電機工程學系,
    2014.
    [12] Juan Fasola and Maja J Mataric. "Using Socially Assistive Human–
    Robot Interaction to Motivate Physical Exercise for Older Adults",
    Proceedings of the IEEE 100(8), 2512-2526 (2012).
    [13] TOYOTA機器人演奏團, Available from:
    https://www.youtube.com/watch?v=Xs_vL9g4IYk
    [14] 陳曼寧, “購物助手型機器人,” 國立臺灣大學機械工程學研究所, 2013.
    [15] DARPA Robotics Challenge, Available from:
    http://spectrum.ieee.org/automaton/robotics/humanoids/drc-finals-
    course
    [16] Jun Nakanisi, and Toshio Fukuda, “Preliminary Studies of a Second
    Generation Brachiation Robot Controller”, Proceedings of the IEEE
    International Conference on Robotics and Automation, Albuquerque,
    New Mexico (Apr, 1997), pp. 2050-2056.
    [17] Haifei Zhu, Yisheng Guan, Wenqiang Wu, Lianmeng Zhang, Xuefeng Zhou,
    and Hong Zhang, “Autonomous Pose Detection and Alignment of Suction
    Modules of a Biped Wall-Climbing Robot,” IEEE/ASME Transaction on
    Mechatronics 20(2), 653-662 (Apr, 2015).
    [18] Hideki Kajima, Masahiro Doi, Yasuhisa Hasegawa, and Toshio Fukuda,
    “Energy Based Swing Control of a Brachiating Robot,” Proceedings of
    the 2005 IEEE International Conference on Robotics and Automation,
    Barcelona, Spain (April 2005), pp. 3670-3675.
    [19] William R. Provancher, Samuel I. Jensen-Segal, and Mark A. Fehlberg,
    “ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot,” IEEE/ASME
    Transactions on Mechatronics 16(5), 897-906 (Oct, 2011).
    [20] 單槓機器人, Available from:
    http://chuansong.me/n/1971565
    [21] Meghdari, A., Lavasani, S. M. H., Norouzi, M., and Mousavi, M. S. R,
    “Minimum control effort trajectory planning and tracking of the
    CEDRA brachiation robot,” Robotica 31(7), 1119-1129 (2013).
    [22] Wan D., Cheng H., Ji G., and Wang S.“Non-horizontal ricochetal
    brachiation motion planning and control for two-link Bio-primate
    robot,” IEEE International Conference on Robotics and Biomimetics
    (ROBIO),Zhuhai, China, (Dec 6-9, 2015), pp. 19-24.
    [23] Brubaker, M. A., and Fleet, D. J., “The kneed walker for human pose
    tracking,” Proc. IEEE Conference on Computer Vision and Pattern
    Recognition, Anchorage, AK, USA, (June, 2008), pp. 1-8.
    [24] Song Cao, and Ram Nevatia, “Forecasting Human Pose and Motion with
    Multibody Dynamic Model,” IEEE Winter Conference on Applications of
    Computer Vision, (2015), pp. 191-198.
    [25] 人體計測資料庫, Available from:
    http://www.ilosh.gov.tw/wSite/ct?xItem=7305&ctNode=665&mp=11
    [26] Arduino Due 控制板, Available from:
    https://www.arduino.cc/en/Main/ArduinoBoardDue
    [27] L298N直流馬達驅動模組, Available from:
    http://shop.cpu.com.tw/product/46920/info/
    [28] HCTL2032 雙軸解相位IC, Available from:
    http://www.avagotech.com/docs/AV02-0096EN
    [29] Maxon motor, Available from:
    http://www.maxonmotor.com.tw/maxon/view/content/products
    [30] 小型兩指平動氣壓夾爪, Available from:
    http://www.ura.com.tw/p3.html

    QR CODE