簡易檢索 / 詳目顯示

研究生: 賴偉民
Wei-Min Lai
論文名稱: 結合無線訊號與攝影機之跨樓層爬梯機器人全自主導航
An RSSI-Assisted Vision Navigation Strategy for an Autonomous Cross-Floor Stair-Climbing Robot
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 郭重顯
Chung-Hsien Kuo
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 跨樓層導航影像車道線無線訊號影像死角影像伺服控制
外文關鍵詞: cross-floor, lane detection, wireless sensor, image dead zone, visual servo control
相關次數: 點閱:543下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來自動化科技蓬勃發展,相對的帶動機器人系統逐步提升,其應用層面遍及了工業界及生活周遭;然而機器人要能在空間中順利移動並協助人們完成指派的任務,其必須具備自行導航的能力。如今以視覺為主的導航應用甚廣,許多相關的研究也不再拘泥於平面的導航;然而,在以建立影像車道線為基礎的導航方法中,較少探討影像死角對其造成的影響,但室內環境存在著許多影像死角,例如走廊轉角、樓梯銜接平面等,故此為不容忽視的問題。有鑑於此,本文旨在發展爬梯機器人之全自主跨樓層導航系統,為了解決各路段影像死角並銜接不同路段完成長距離跨樓層導航,本研究提出以無線訊號輔助視覺的方法偵測各死角的位置,使機器人接近該區域時能自行調整攝影機視角來維持基本的影像視野。
    文中以視覺感測器進行導航資訊擷取,並在已知環境中以明顯的特徵點或特徵線來建立影像車道線作為導航依據,其中探討的環境包含有室外走廊、樓梯和室內走廊。在導航控制器設計上本研究採用以影像為基礎之影像伺服控制架構,並藉由車道線在影像上的位移與角度誤差作為回授控制,使機器人維持在車道中間移動。最後本文藉由一自製之爬梯機器人進行由一樓至四樓之跨樓層導航測試,證實所提方法之可行性。


    Navigation is an important technique for autonomous robots to freely roam in desired environments and successfully perform assigned tasks. As the demands of complicated tasks in various environments keep increasing in service robots, recently cross-floor navigation using vision sensor has drawn many interests from researchers. However, in either elevator or stairway environments, the issue of image dead zones still limits most discussions in local area navigation and requires further investigation. This thesis aims to develop an autonomous cross-floor navigation system for stair-climbing mobile robot. Particularly, wireless sensor modules are installed in the image dead zones so that the robot can adjust and continue its motion accordingly, achieving such long-distance navigation task. By using upward and forward looking camera setups, imaged based navigation is conducted in most road sections. Image features including ceiling landmarks, stair lines, and skirting lines are adopted to detect robot guiding lanes with appropriate image-processing algorithms. To let the robot follow the detected image lanes correctly, a visual servo control driven by image errors and based on car-like mobile robot differential kinematics is also applied for motion control. A self-made stair-climbing robot is finally used to validate the effectiveness of the proposed navigation method.

    摘要.........................................................................I Abstract.....................................................................II 致謝.........................................................................III 目錄..........................................................................IV 圖目錄.........................................................................VI 表目錄..........................................................................X 第一章 緒論.....................................................................1 第二章 系統架構..................................................................7 2.1 筆記型電腦.................................................................10 2.2 Arduino 控制板.............................................................10 2.3 Wixel 控制板...............................................................11 2.4 攝影機與伺服機..............................................................12 2.5 Faulhabr 馬達與馬達驅動器....................................................13 2.6 移動型機器人................................................................14 第三章 數位影像處理..............................................................15 3.1 數位影像簡介................................................................15 3.2 影像前處理.................................................................18 3.2.1 彩色轉灰階...............................................................18 3.2.2 二值化...................................................................19 3.2.3 適應性二值化..............................................................20 3.2.4 中值濾波.................................................................23 3.2.5 形態學...................................................................24 3.3 物件偵測與擷取..............................................................27 3.3.1 邊緣偵測.................................................................27 3.3.2 霍夫轉換直線偵測...........................................................28 3.3.3 賈伯濾波器紋路偵測.........................................................28 3.3.4 物件連通法...............................................................30 第四章 實驗路段影像流程與結果......................................................31 4.1 路段(1)影像實驗.............................................................31 4.2 路段(2)影像實驗.............................................................35 4.3 樓梯影像實驗................................................................40 4.4 路段(4)影像實驗.............................................................42 4.5 路段(5)影像實驗.............................................................43 第五章 無線訊號牆角偵測...........................................................47 5.1 無線訊號發架構與訊號整合......................................................47 5.2 無線訊號架設及影響...........................................................48 第六章 移動型機器人設計與運動控制...................................................51 6.1 移動型機器人設計與架構........................................................51 6.2 移動型機器人運動分析.........................................................52 6.3 移動型機器人影像伺服架構......................................................54 第七章 實驗結果.................................................................60 7.1 各路段影像處理實驗...........................................................60 7.2 無線訊號轉角偵測實驗.........................................................62 7.3 各路段影像導航實驗...........................................................63 第八章 結論與未來研究建議.........................................................70 8.1 結論......................................................................70 8.2 未來研究建議................................................................71 參考文獻.......................................................................73

    [1] “Forked Automatic Guided Vehicles,” http://www.jbtc-agv.com/en/Solutions/Pro
    ducts/Forked-Automatic-Guided-Vehicles-AGVs.
    [2] “Patriot P340 Narrow Aisle Forklift AGV,” http://www.coreconagvs.com/product
    s/P340.php.
    [3] “iRobot Roomba 560 Vacuum Cleaning Robot,” http://www.thegreenhead.com/2 007/08/irobot-roomba-560-vacuum-cleaning-robot.php.
    [4] “iRobot and InTouch Health Announce RP-VITA Telemedicine Robot,” http://sp
    ectrum.ieee.org/automaton/robotics/medical-robots/irobot-and-intouch-health-an
    nounce-rpvita-telemedicine-robot.
    [5] F. Lu, G. H. Tian, “The ZigBee Based Wireless Sensor and Actor Network in
    Intelligent Space Oriented to Home Service Robot,” International Journal of
    Communications, Network and System Sciences, Vol. 5, pp. 280-285, 2012.
    [6] S. Han, H. Lim, and J. Lee, “An Efficient Localization Scheme for a
    Differential-Driving Mobile Robot Based on RFID System,” IEEE Transactions
    on Industrial Electronics, Vol. 54, No. 6, pp. 3362-3369, 2007.
    [7] S. Park and S. Hashimoto, “Autonomous Mobile Robot Navigation Using
    Passive RFID in Indoor Environment,” IEEE Transactions on Industrial
    Electronics, Vol. 56, No. 7, pp. 2366-2373, 2009.
    [8] H. D. Kim, W. S. Sang, I. H. Jang, and K. B. Sim, “SLAM of Mobile Robot in
    the indoor Environment with Digital Magnetic Compass and Ultrasonic
    Sensors,” Proceedings of IEEE International Conference on Control, Automation
    and Systems, pp. 87-90, 2007.
    [9] “Dead reckoning,” http://en.wikipedia.org/wiki/Dead_reckoning.
    [10] G. S. Huang, C. K. Tung, and J. C. Ciou, “To Achieve the Path Planning of
    74 Mobile Robot for a Correct Destination and Direstion Using Fuzzy Theory,”
    Proceedings of IEEE International Symposium on Industrial Electronics, Korea,
    pp. 1737-1742, 2008.
    [11] 陳君羽, “以掃描式雷射測距儀為基礎的室內導航系統設計與實作,” 國立清華大學動力機械工程學系碩士班論文, 2010.
    [12] 林伯亮, “基於雷射測距儀之反應式機器人導航系統,” 國立中央大學電機工程研究所碩士班論文, 2009.
    [13] 楊勝明, “以圖像辨識為基礎之自走車導航控制,” 國立中央大學電機工程研究所碩士班論文, 2010.
    [14] 朱廣文, “自走車控制結合攝影機與雷射測距儀,” 國立台灣科技大學電機工程系碩士班論文, 2009.
    [15] M. Tian, F. Liu, W. Zhu, and C. Xu, “Vision Based Lane Detection for Active
    Security in Intelligent Vehicle,” Proceedings of IEEE International Conference
    on Vehicular Electronics and Safety, pp. 507-511, 2006.
    [16] D. Schreiber, B. Alefs, and M. Clabian, “Single camera lane detection and
    tracking,” Proceedings of IEEE International Conference on Intelligent Transportation Systems, pp. 302-307, 2005.
    [17] A. A. M. Assidiq, O. O. Khalifa, M. R. Islam, and S. Khan, “Real Time Lane
    Detection for Autonomous Vehicles,” Proceedings of IEEE International Conference on Computer and Communication Engineering, pp. 82-88, 2008.
    [18] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and H. Chen, “A Novel Lane
    Detection Based on Geometrical Model and Gabor Filter,” Proceedings of IEEE
    Intelligent Vehicles Symposium, USA, pp. 59-64, 2010.
    [19] G. N. DeSouza, and A. C. Kak, “Vision for Mobile Robot Navigation:A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 2, pp. 237-267, 2002.
    [20] E. Klingbeil, B. Carpenter, O. Russakovsky, and A. Y. Ng, “Autonomous
    Operation of Novel Elevators for Robot Navigation,” Proceedings of IEEE
    International Conference on Robotics and Automation, USA, pp. 751-758, 2010.
    [21] J. G. Kang, S. Y. An, and S. Y. Oh, “Navigation Strategy for the Service Robot in
    the Elevator Environment,” Proceedings of IEEE International Conference on
    Control and Automation Systems, Korea, pp. 1092-1097, 2007.
    [22] 曾宣僑, “具人機互動能力之服務型機器人,” 國立成功大學工程科學學系碩
    士論文, 2009.
    [23] 陳漢忠, “智慧型搭乘電梯機器人,” 國立中央大學電機工程學系碩士論文,
    2009.
    [24] 林晉億, “可自搭電梯之跨樓層自走機器人,” 國立成功大學工程科學研究所
    碩士論文, 2012.
    [25] 林紹群, “嵌入式機器人搭乘電梯之研發與實作,” 國立成功大學工程科學學
    系碩士論文, 2012.
    [26] 吳添增, “影像伺服及其在機器人搭乘電梯之應用,” 國立交通大學電機與控
    制工程學系, 1998.
    [27] S. Wang, and H. Wang, “2D Staircase Detection Using Real Adaboost,”
    Proceedings of IEEE International Conference on Information, Communications
    and Signal Processing, China, pp. 376-380, 2009.
    [28] E. Mihankhah, A. Kalantari, E. Aboosaeedan, H. Taghirad, S. Ali, and A.
    Moosavian, “Autonomous Staircase Detection and Stair Climbing for a Tracked
    Mobile Robot Using Fuzzy Controller,” Proceedings of IEEE International
    Conference on Robotics and Biomimetics, Thailand, pp. 1980-1985, 2008.
    [29] Y. Cong, X. Li, J. Liu, and Y. Tang, “A Stairway Detection Algorithm based on
    Vision for UGV Stair Climbing,” Proceedings of the IEEE International
    Conference on Networking, Sensing and Control, China, pp. 1806-1811, 2008.
    [30] C. Zhong, Y. Zhuang, and W. Wang, “Stairway Detection Using Gabor Filter and FFPG,” Proceedings of IEEE International Conference of Soft Computing and
    Pattern Recognition, China, pp. 578-582, 2011.
    [31] D. C. Hernandez, K. H. Jo, “Stairway Segmentation Using Gabor Filter and
    Vanishing Point,” Proceedings of IEEE International Conference on Mechatronics and Automation, China, pp. 1027-1032, 2011.
    [32] D. C. Hernandez, and K. H. Jo, “Outdoor Stairway Segmentation Using Vertical Vanishing Point and Directional Filter,” Proceedings of IEEE International Forum on Strategic Technology, pp. 1-5, 2010.
    [33] 柳高陵, “以視覺為基礎之小型人形機器人階梯步行,” 國立臺灣科技大學電機工程系碩士學位論文, 2006.
    [34] Y. Huo, G. Wei, Y. Zhang, and L. Wu, “An Adaptive Threshold for the Canny
    Operator of Edge Detection,” Proceedings of IEEE Conference on Image
    Analysis and Signal Processing, pp. 371-374, 2010.
    [35] “OpenCV,” http://opencv.org/.
    [36] “A53SV Laptop,” http://www.asus.com/tw/Notebooks_Ultrabooks/A53SV/#spec
    ifications.
    [37] “Arduino Mega,” http://arduino.cc/en/Main/ArduinoBoardMega.
    [38] “Wixel Programmable USB Wireless Module,” http://www.pololu.com/catalog/p
    roduct/1336/specs.
    [39] “LifeCam Studio 網路攝影機,” http://www.microsoft.com/hardware/zh-tw/p/life
    cam-studio/Q2F-00005#support.
    [40] Faulhaber, Miniature Drive Systems, 2012.
    [41] “RGB color model,” http://en.wikipedia.org/wiki/RGB_color_model.
    [42] “HSL and HSV,” http://en.wikipedia.org/wiki/HSL_and_HSV.
    [43] “YUV,” http://en.wikipedia.org/wiki/YUV.
    [44] “YIQ,” http://en.wikipedia.org/wiki/YIQ.
    [45] “Additive color,” http://en.wikipedia.org/wiki/Additive_color.
    [46] M. Kaushal, A. Singh, and B. Singh, “Adaptive Thresholding for Edge Detection in Gray Scale Images,” International Journal of Engineering Science and Technology, Vol. 2, pp. 2077-2082, 2010.
    [47] 許志豪, “影像二值化演算處理器之軟/硬整合設計與實現,” 國立臺灣科技大學電子工程系碩士學位論文, 2009.
    [48] 鍾國亮, 影像處理與電腦視覺, 四版, 東華書局, 台北, 2008.
    [49] 陳慶昌, “影像自動化微組裝工廠之發展,” 國立成功大學機械工程學系碩士論文, 2006.
    [50] 郭拱辰, “具邊緣偵測影像處理功能之CMOS 影像感測晶片,” 國立成功大學電機工程學系碩士論文, 2006.
    [51] P. Bao, L. Zhang, and X. L. Wu, “Canny Edge Detection Enhancement by Scale
    Mutiplication,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
    Vol. 27, No. 9, pp. 1485-1490, 2005.
    [52] Paul V. C. Hough, “Method and Means for Recognizing Complex Patterns,”
    USA, US 3069654, 1962.
    [53] R. O. Duda, and P. E. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures,” Communications of the ACM, Vol. 15, No. 1, pp. 11-15, 1972.
    [54] W. T. Li, K. Z. Mao, H. Zhang, and T. Y. Chai, “Designing Compact Gabor Filter Banks for Efficient Texture Feature Extrction,” Proceedings of IEEE
    International Conference on Control, Automation, Robotics and Vision, Singapore, pp. 1193-1198, 2010.
    [55] 陳翔傑, “自動化車牌辨識系統設計,” 國立中央大學電機工程研究所碩士論文, 2005.
    [56] 吳怡明, “手勢辨識應用於遙控音樂播放系統,” 臺灣科技大學電機工程系碩士學位論文, 2009.
    [57] S. Y. Hwang, and J. B. Song, “Monocular Vision-Based SLAM in Indoor
    Environment Using Corner, Lamp, and Door Features from Upward-Looking Camera,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, pp. 4804-4812, 2011.
    [58] 周恩鋒, “可適應天候變化的前車偵測技術,” 國立中央大學資訊工程研究所碩士論文, 2010.
    [59] 林師泓, “雷射測距儀輔助無線感測器網路於動態室內之應用,” 國立臺灣科技大學機械工程研究所碩士論文, 2010.
    [60] 施慶隆、李文猶, 機電整合控制 – 多軸運動設計與應用, 第二版, 全華圖書股份有限公司, 台北, 2009.
    [61] J. Hill, and W. T. Park, “Real Time Control of a robot with a mobile camera,” SRI International, 1979.
    [62] R. Y. Tsai, “A Versatile Camera Calibration Technique for High-Accuracy 3D
    Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses” IEEE
    Journal of Robotics and Automation, Vol. 3, No. 4, pp. 323-344, 1987.
    [63] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE
    Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp.
    1330-1334, 1998.
    [64] L. E. Weiss, A. C. Sanderson, and C. P. Neuman, “Dynamic Sensor-Based
    Control of Robots with Visual Feedback,” IEEE Journal of Robotics and Automation, Vol. 3, No. 5, pp. 404-417, 1987.
    [65] 劉晉嘉, “結合無線訊號強度與單一攝影機SLAM 的室內定位方法,” 國立臺灣科技大學機械工程系碩士學位論文, 2011.
    [66] 朱廣文, “自走車控制結合攝影機與雷射測距儀,” 國立臺灣科技大學電機工程系碩士學位論文, 2009.
    [67] 林子揚, “雷射測距儀應用於輪型機器人自動導航,” 國立中央大學電機工程研究所碩士班論文, 2010.

    QR CODE