簡易檢索 / 詳目顯示

研究生: 義撒
Issa - Arwani
論文名稱: Concentric Distributed Localization for Wireless Sensor Networks with the Tripodal Anchor Structure and Grid Scan
Concentric Distributed Localization for Wireless Sensor Networks with the Tripodal Anchor Structure and Grid Scan
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 陳金蓮
Chen, Jean-Lien
項天瑞
Hsiang, Tien-Ruey
周俊廷
Chun-Ting Chou
黃依賢
I-Shyan Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 24
中文關鍵詞: Wireless sensor networklocalizationtripodal anchor structuregrid scan
外文關鍵詞: Wireless sensor network, localization, tripodal anchor structure, grid scan
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Achieving high accuracy with minimum reference nodes, anchor nodes, and computation and communication costs is a goal for the localization in wireless sensor networks (WSNs). Targeting at this goal, a localization scheme called concentric distributed localization with the tripodal anchor structure and grid scan (CDL-TAGS) requiring two reference nodes and a few anchor nodes is proposed in this paper. Under the precondition that the system has randomly distributed normal sensor nodes, a tripodal anchor structure is first designed. With this structure, the localization process is started from the centroid node and then stretched outward to the farthest normal nodes. Based on the two best reference nodes, a virtual point is generated to serve as the third reference node. In the CDL-TAGS scheme, a grid scan algorithm is employed to estimate the position of a normal node. Finally, we show that the communication overhead, time and space complexities among sensor nodes for CDL-TAGS can be kept at a low level. In addition, CDL-TAGS can achieve better accuracy with minimum anchor nodes as compared to some closely related localization schemes in the literature through simulation results.


    Achieving high accuracy with minimum reference nodes, anchor nodes, and computation and communication costs is a goal for the localization in wireless sensor networks (WSNs). Targeting at this goal, a localization scheme called concentric distributed localization with the tripodal anchor structure and grid scan (CDL-TAGS) requiring two reference nodes and a few anchor nodes is proposed in this paper. Under the precondition that the system has randomly distributed normal sensor nodes, a tripodal anchor structure is first designed. With this structure, the localization process is started from the centroid node and then stretched outward to the farthest normal nodes. Based on the two best reference nodes, a virtual point is generated to serve as the third reference node. In the CDL-TAGS scheme, a grid scan algorithm is employed to estimate the position of a normal node. Finally, we show that the communication overhead, time and space complexities among sensor nodes for CDL-TAGS can be kept at a low level. In addition, CDL-TAGS can achieve better accuracy with minimum anchor nodes as compared to some closely related localization schemes in the literature through simulation results.

    Abstract i Contents i List of Tables iv List of Figures v 1 Introduction 1 2 Related Work 4 2.1 Approximative Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Exact Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Problem Statement and Main Components of a Localization System 6 3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Main Components of a Localization System . . . . . . . . . . . . . . . . . . . . . . 7 3.2.1 Distance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.2 Position computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.3 Localization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 The Proposed Localization Scheme 9 4.1 Tripodal Anchor Structure and Basic Concept of Localization . . . . . . . . . . . . 9 4.2 Localization Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2.1 Calculating the centroid node position and its virtual points . . . . . . . . . 10 4.2.2 Selecting reference nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.3 Getting a virtual reference node . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.4 Dividing the estimation rectangle into a grid matrix . . . . . . . . . . . . . 13 4.2.5 Grid scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.6 Estimating the position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.7 Quantifying the residual error . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.8 Broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Complexity Analysis 15 5.1 Communication complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Time and space complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 Simulation Results and Discussions 17 6.1 Simulation Environment and Parameters . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.1 Average location error R . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.2.2 Ratio of locatable nodes Pl . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3 Determination of Some Parameters for CDL-TAGS . . . . . . . . . . . . . . . . . . 18 6.3.1 Position of the tripodal anchor structure . . . . . . . . . . . . . . . . . . . . 18 6.3.2 Arm length of the tripodal anchor structure . . . . . . . . . . . . . . . . . . 19 6.4 Comparisons among CDL-TAGS, EWCL, RPE, and Grid Scan . . . . . . . . . . . 19 6.4.1 One tripodal anchor structure for CDL-TAGS . . . . . . . . . . . . . . . . . 20 6.4.2 More tripodal anchor structures for CDL-TAGS . . . . . . . . . . . . . . . 20 6.4.3 Comparisons with varying RSSI errors . . . . . . . . . . . . . . . . . . . . . 20 7 Conclusions 22 Bibliography 22

    [1] J. Albowicz, A. Chen, and L. Zhang, “Recursive position estimation in sensor networks,” in Proc. IEEE ICNP ’01, Nov. 2001, pp. 35–41.
    [2] J. Aspnes., T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur, “A theory of network localization,” IEEE Transactions on Mobile Computing, vol. 5, no. 12, pp. 1663–1678, Dec. 2006.
    [3] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, “Weighted centroid localization in zigbee-based sensor networks,” in Proc. IEEE WISP ’07, Oct. 2007, pp. 1–6.
    [4] J. Blumenthal and Y. Forghani, “A new weighted centroid localization algorithm in wireless sensor networks,” in Proc. IEEE ICCIT ’08, Dec. 2008, pp. 89–93.
    [5] A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 6–12, Dec. 2007.
    [6] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor localization for very small devices,” IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp. 28–34, Oct. 2000.
    [7] S. Capkun, M. Hamdi, and J. P. Hubaux, “GPS-free positioning in mobile ad-hoc networks,” in Proc. IEEE System Sciences ’01, Jan. 2001, pp. 1–10.
    [8] Y. Forghani, “A new approximate positioning approach in wireless sensor networks,” in Proc. IEEE INCC ’08, May 2008, pp. 138–143.
    [9] L. Girod and D. Estrin, “Robust range estimation using acoustic and multimodal sensing,” in Proc. IEEE IROS ’01, Nov. 2001, pp. 1312–1320.
    [10] T. He, C. D. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-free localization schemes in large scale sensor networks,” in Proc. ACM MobiCom ’03, 2003, pp. 81–95.
    [11] T. Hui, W. Shuang, and X. Huaiyao, “Localization using cooperative AOA approach,” in Proc. IEEE WICOM ’07, Sep. 2007, pp. 2416–2419.
    [12] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for wireless networks,” in Proc. ACM MobiCom ’00, Aug. 2000, pp. 243–254.
    [13] W. H. Liao, K. P. Shih, and Y. C. Lee, “A localization protocol with adaptive power control in wireless sensor networks,” ACM Transaction on Computer Communication, vol. 31, no. 10, pp. 2496–2504, Jun. 2008.
    [14] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using AOA,” in Proc. IEEE INFOCOM ’03, Apr. 2003, pp. 1734–1743.
    [15] S. J. Ping, P. C. Chen, and C. S. Hsu, “A distributed localization scheme for wireless sensor networks with improved grid-scan and vector-based refinement,” IEEE Transactions on Mobile Computing, vol. 7, no. 9, pp. 1110–1123, Sep. 2008.
    [16] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket location-support system,” in Proc. ACM MobiCom ’00 , Aug. 2000, pp. 32–43.
    [17] F. Reichenbach, A. Born, D. Timmermann, and R. Bill, “A distributed linear least squares method for precise localization with low complexity in wireless sensor network,” in Journal on Distributed Computing Sensor Systems, vol. 4026, Springer US, 2006, pp. 514–528.
    [18] B. Sau and K. Mukhopadhyaya, “Length-based anchor-free localization in a fully covered sensor network,” in Proc. IEEE COMSNETS ’09, Jan. 2009, pp. 1–10.
    [19] A. Savvides, C. C. Han, and M. B. Srivastava, “Dynamic fine-grained localization in ad-hoc wireless sensor networks,” in Proc. ACM MobiCom ’01, July 2001.
    [20] V. Vivekanandan and V. W. S. Wong, “Concentric anchor beacon localization algorithm for wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2733–2744, Sep. 2007.
    [21] J. Z. Wang and H. Jin, “Improvement on APIT localization algorithms for wireless sensor networks,” in Proc. IEEE NSWCTC ’09, Apr. 2009, pp. 719–723.
    [22] C. Xu, L. Cao, Q. Sun, and H. Zhou, “Farthest 2 anchors in radio range localization in wireless sensor networks,” in Proc. IEEE WICOM ’08, Oct. 2008, pp. 1–3.
    [23] Z. Yan, Y. Chang, Z. Shen, and Y. Zhang, “A grid-scan localization algorithm for wireless sensor network,” in Proc. IEEE CMC ’09, Jan. 2009, pp. 142–146.
    [24] B. Yu and K. Sycara, “Geographic routing in distributed sensor systems without location information,” in Proc. IEEE ICIF ’06, Jul. 2006, pp. 1–8.
    [25] C. Zenon, K. Ryszard, N. Jan, and N. Michal, “Methods of sensors localization in wireless sensor networks,” in Proc. IEEE ECBS ’07, Mar. 2007, pp. 145–152.
    [26] The network simulator NS-2, http://www.isi.edu/nsnam/ns/ns-documentation.html. [27] Mannasim, http://www.mannasim.dcc.ufmg.br/.

    QR CODE