簡易檢索 / 詳目顯示

研究生: 黃 鶴
Ho - Haung
論文名稱: 氮化鎵發光二極體與太陽能電池積體化的可行性研究
Feasibility study on integration of GaN-based Light Emitting Diodes and solar cells
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 葉文昌
Wen-Chang Yeh
趙良君
Liang-Chun Chao
蘇忠傑
Jhong-Jie Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 氮化鎵發光二極體太陽能電池氧化銦錫製程蕭基接觸
外文關鍵詞: GaN, LED, Solar cell, ITO, Mnufacturing, Schottky contact
相關次數: 點閱:269下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來氮化鎵材料已成為製作藍光發光二極體的主流且快速的發展。另一方面,自從氮化銦能隙更正後,發現以能隙為紫外光波長的氮化鎵(3.4eV)與紅外光波長的氮化銦(0.7eV)組成的氮化銦鎵,能組合成幾乎涵蓋整個太陽光譜(0.7-3.9eV)的多接面太陽能電池。因此本實驗的目標為在一片磊晶片上同時製作出太陽能電池與發光二極體兩種元件並積體化,使元件在光照下將光能轉換成電能並直接供給發光二極體,發出藍光。在元件設計中要同時考慮製程與結構對兩種元件的影響,並做出積體化元件的最佳設計。
實驗中製作與比較不同結構與製程的元件,並量測發光二極體的I-V、L-I曲線與太陽能電池的I-V曲線,包括比較p型氮化鎵活化製程、以薄金屬製作電流擴散層,以ITO製作電流擴散層,對兩種元件的影響。量測結果發現p型氮化鎵與金屬電極之間有嚴重的蕭基接觸,造成發光二極體串聯電阻與啟動電壓增加,並且減低太陽能元件的光電流。藉由p型氮化鎵高溫活化製程提升p型氮化鎵濃度,可減低氮化鎵與金屬接面的蕭基接觸影響。以ITO製作電流擴散層的元件,由於製程中ITO與氮化鎵間已形成歐姆接觸,因此減低了發光二極體的串聯電阻與啟動電壓,加上ITO的電流擴散與高穿透率,總體上增加了發光二極體的光通量,並同時增加了太陽能電池的短路電流,兩種元件的效率都獲得顯著提升。因此評估以單一接面氮化鎵晶圓加上ITO電流擴散層做成太陽能電池與發光二極體積體化元件,每平方公分可產生0.25流明的光通量。


In recent years, GaN-based material has been rapidly developed for the manufacturing of blue LED. Moreover, it is newly considered as a candidate to make high-efficiency solar cells. Due to the discovery and correction of the number of InN bandgap energy, the whole solar spectrum which is 0.7-3.9eV can be covered by a multi-junction solar cell solely composed of GaN-based material with composition varied between GaN(3.4eV) and InN(0.7eV). Therefore, in this thesis we studied the feasibility to integrate solar cell and LED on the same wafer. Such device would transform solar power into electric power, and then drive LED directly to emit blue light.
In this research, we made devices of different processes and structures, including (1)p-doping activation process, (2)using thin metal as transparent conductive layer, and (3)using ITO as transparent conductive layer. The resulted LED's I-V and L-I curves and solar cell's I-V curve were measured and compared. We found there was serious Schottky contact between p-GaN and metal resulting in high turn-on voltage and series resistance for LED, and low photocurrent for solar cell. The p-doping activation process was proved to mitigate the Schottky contact problem by raising p-doping level. The device with ITO transparent conductive layer exhibited characteristic of Ohmic contact between GaN and ITO, plus good current spreading and high light transmission. As a result, LED's series resistance,turn-on voltage, and optical power were improved. In addition, it increased solar cell's short-circuit current. Therefore ITO transparent conductive layer improved both devices’ efficiency. It is evaluated that an integrated solar LED made of one-junction GaN-based material plus ITO transparent conductive layer would produce 0.25 Lumen per square centimeter in area.

中文摘要I 英文摘要III 致謝V 目錄VI 圖列VIII 表列X 第一章 緒論1 1.1 氮化鎵材料的發展與介紹2 1.2 氮化鎵太陽能發展與介紹7 第二章 發光二極體與太陽能元件原理介紹9 2.1 發光二極體的結構與原理9 2.1.1.1 發光二極體原理9 2.1.1.2 發光二極體的等效電路11 2.2 太陽能電池原理與結構12 2.2.1 太陽能電池原理12 2.2.2 太陽能電池的等效電路14 2.2.3 太陽能電性分析16 2.2.4 太陽光源18 2.3 蕭基接觸19 第三章 積體化太陽能與發光二極體元件設計與討論21 3.1 p-i-n結構太陽能電池21 3.2 多量子井結構發光二極體23 3.3 p型半導體厚度對太陽能電池影響25 3.4 ITO(Indium Tin oxide)透明導電層對太陽能電池與發光二極體之影響27 3.5 太陽能電池與發光二極體元件設計30 第四章 元件製程與製程儀器介紹35 4.1 元件製程35 4.1.1 晶片表面清潔35 4.1.2 元件絕緣(Isolation)層製程36 4.1.3 p型氮化鎵活化製程37 4.1.4 Mesa製程38 4.1.5 n型氮化鎵接觸電極製作38 4.1.6 透明導電層(Transparent Conductive Layer, TCL)製作40 (a) ITO透明導電層製作40 (b) Ni/Au薄金屬導電層製作42 4.1.7 p型氮化鎵接觸電極製作43 4.1.8 微影製程44 (a) 正光阻微影製程44 (b) 負光阻微影製程45 4.2 製程儀器介紹47 4.2.1 感應藕荷電漿反應式離子蝕刻機47 4.2.2 電子束蒸鍍機 (E-beam evaporator)49 第五章 太陽能電池與發光二極體量測與討論51 5.1 量測系統介紹51 5.1.1 I-V量測系統51 5.1.2 L-I量測系統53 5.2 太陽能電池與發光二極體量測與討論55 5.2.1 活化製程對太陽能與發光二極體的影響56 5.2.2 不同材料電流擴散層對太陽能電池與發光二極體的影響61 5.3 太陽能與發光二極體量測討論70 第六章 結論與未來發展方向 74 參考資料77

[1] H. P. Maruska and J. J. Tietjen,“The preparation and properties of vapor-deposited single-crystal-line GaN”, Applied Physics Letters, Vol. 15, 327, 1969.
[2] Johnson W.C., Parsons J.B., and Crew M.C., "Nitro-gen compounds of gallium", The Journal of Physical Chemistry, 36 (10): 2651, 1932.
[3] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, "gan Blue Light-Emitting Diodes," The Journal of Luminescence, 5, 84, 1972.
[4] H.P. Maruska, and D.A . Stevenson, "Mechanism of light production in metal insulator semiconductor diodes; GaN:Mg violet light emitting diodes," Solid-State Electronics, v 17, n 11, p 1171-1179, Nov 1974.
[5] T. Yamaguchi, Y. Ueda, Y. Matsushita, K. Koga, and T. Niina, "High-brightness SiC blue LEDs and their application to full-color LED lamps," Optoelectronics Tokyo, vol. 7, pp. 57-67, 1992.
[6] K. Ohkawa, A. Ueno, and T. Mitsuyu, "Blue electroluminescence from ZnSe p-n junction LEDs," Jpn, Yokohama, pp. 704-706, 1991.
[7] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron-Beam Irradiation," Japanese Journal of Applied Physics Part 2-Letters, vol. 28, pp. L2112-L2114, 1989.
[8] S. Yoshida, S. Misawa, and S. Gonda, "Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates," Applied Physics Letters, vol. 42, pp. 427-429, 1983.
[9] S. Nakamura and G. Fasol, "The Blue Laser Diode," Berlin, Springer, 1997.
[10] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-Type Mg-doped GaN films," Jpn. Journal of Applied Physics. 31, L139, 1992.
[11] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, "Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Bandgap", physica status solidi (b), 229(3), R1 (2002).
[12] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthm&uuml;ller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, "Bandgap of InN and In-rich InxGa1-xN alloys (0.36 <x1) ", physica status solidi (b), 230(2), R4 (2002)
[13] W. W. J. Wu, K. M. Yu, W. Shan, J. W. A. III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, "Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system," Journal of Applied Physics, vol. 94, 15 NOVEMBER 2003.
[14] O. Jani, C. Honsberg, Y. Huang, J.-O. Song, I. Ferguson, G. Namkoong, E. Trybus, A. Doolittle, and S. Kurtz, "DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS," IEEE, 2006.
[15] O. Jani, l. Ferguson, C. Honsberg, and S. Kurtz, "Design and characterization of GaN/InGaN solar cells," Applied Physics Letters vol. 91, 28 September 2007.
[16] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Dwliffle, and S. Kurtz, "CHARACTERIZATION AND ANALYSIS OF InGaN PHOTOVOLTAIC DEVICES," IEEE., 2005.
[17] E. F. Schubert, "LUGHT-EMITTING DIODES 2nd," p. 70, Cambridge ; New York : Cambridge University Press, 2006.
[18] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, "Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition," Applied Physics Letters. 70 (9), 3 March 1997.
[19] C. J. Neufeld, N. G., Toledo, S. C. Cruz, M. Iza, S. P., DenBaars, and U. K. Mishra, "High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap," Applied Physics Letters 93, 143502, 2008.
[20] X. Chen, K. D. Matthews, W. J. S. D. Hao, and L. F. Eastman, "Growth, fabrication and characterization of InGaN solar cells," physica status solidi. (a) 205, No. 5, 1103–1105, 2008.
[21] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, "InGaN/GaN multiple quantum well solar cells with long operatingwavelengths," Applied Physics Letters vol. 94, 063505, 2009.
[22] Z. Z. Bandic&acute;, P. M. Bridger, E. C. Piquette, and T. C. McGill, "Minority carrier diffusion length and lifetime in GaN," Applied Physics Letters, vol. 72, 15 JUNE 1998.
[23] E. F. Schubert, "LUGHT-EMITTING DIODES 2nd," p. 141, Cambridge ; New York : Cambridge University Press, 2006.
[24] P. Ruterana, M. Albrecht, and J. Neugebauer, "Nitride semiconductors : handbook on materials and devices ," Weinheim : Wiley-VCH, c2003.
[25] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, "Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy," Applied Physics Letters, vol. 68, pp. 2699-2701, 1996.
[26] S. Y. Kim, H. W. Jang, and J.-L. Lee, "High-brightness GaN-based light-emitting diode with indium tin oxide based transparent ohmic contact," Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 22, pp. 1851-1857, 2004.
[27] R. J. Shul, L. Zhang, C. G. Willison, J. Han, S. J. Pearton, J. Hong, C. R. Abernathy, and L. F. Lester, "Group-III nitride etch selectivity in BCl3/Cl2 ICP plasmas," Boston, MA, USA, 1999, pp. G8.1-G8.1.
[28] Y. Han, Z. Liu, Y. Luo, M. Hongxia, X. Zhang, and L. Wang, "The effect of p-InGaN layer on ITO based ohmic contacts to p-GaN," Beijing and Lanzhou, China, 2007, pp. 90-91.
[29] P. Ruterana, M. Albrecht, and J. Neugebauer, "Nitride semiconductors : handbook on materials and devices " Weinheim : Wiley-VCH, c2003.
[30] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, "Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy," Applied Physics Letters, vol. 68, pp. 2699-2701, 1996.
[31] S.Yoshida, S. Misawa, S. Gonda, "Epitaxial growth of GaN/AlN heterostructures, " J. Vac. Sci. Technol. B 1, 250, 1983.
[32] 張凱彥, "GaN/InGaN多重量子井太陽電池之模擬研究", 2009.
[33] Yen Sheng Lin, "以Macleod軟體模擬下增加抗反射層後元件的穿透率", 2009.
[34] L. Ya-Ju, K. Hao-Chung, L. Tien-Chang, and W. Shing-Chung, "High Light-Extraction GaN-Based Vertical LEDs With Double Diffuse Surfaces," Quantum Electronics, IEEE Journal of, vol. 42, pp. 1196-1201, 2006.
[35] Kasap, S. O. (Safa O.), "Optoelectronics and photonics : principles and practices," Upper Saddle River, NJ : Prentice Hall, c2001.
[36] 劉文超, "半導體製造技術," 滄海書局, 2003.
[37] 陳隆建, "發光二極體之原理與製程", 全華, 2008.
[38] 黃惠良, "太陽電池 : 太陽能轉換成電能的最佳裝置", 五南, 2008

QR CODE