簡易檢索 / 詳目顯示

研究生: 何沁蓉
Chin-Jung Ho
論文名稱: 二硫化鉬及二硒化鉬層狀半導體奈米結構之高頻時間解析光電導特性
High-Frequency Time-Resolved Photoconduction in MoS2 and MoSe2 Layer Semiconductors
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 二硫化鉬二硒化鉬光電導高頻時間解析
外文關鍵詞: MoS2, MoSe2, Photoconduction, High-Frequency Time-Resolved
相關次數: 點閱:525下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


中文摘要 I ABSTRACT II 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 過渡金屬硫屬化合物 1 第二章 實驗方法 3 2.1 二硫化鉬與二硒化鉬之晶體成長 3 2.2 二硫化鉬與二硒化鉬之形貌與結構特性檢測 4 2.2.1 拉曼散射儀(Raman scattering spectroscopy) 4 2.2.2 X光繞射儀 (X-ray diffractometry, XRD) 6 2.2.3 雙束型聚焦離子束(dual-beam focused ion beam, FIB) 9 2.2.4 原子力顯微鏡(atomic force microscopy, AFM) 13 2.3 奈米結構與塊材結構元件製作 15 2.3.1 奈米結構樣品製備 16 2.3.1.1 元件基板製作 16 2.3.1.2 機械式剝離法將層狀材料分散 17 2.3.1.3 層狀樣品電極製作 19 2.3.2 塊材元件製作 21 2.4 奈米薄片之暗電導特性研究 22 2.4.1 電流對電壓曲線量測(current-voltage measurement) 23 2.4.2 奈米材料之光電導特性研究 23 2.4.3 光電導曲線量測(photoconductivity curve measurement) 24 2.4.4 高頻率解析時間之光電導量測(High-Frequency Time-Resolved Photoconductivity Measurement) 26 2.4.5 溫度變化之光電導量測(ambience-dependent photocurrent measurement) 30 第三章結果與討論 33 3.1 二硫化鉬與二硒化鉬單晶之表面形貌與結構分析 33 3.1.1 表面形貌 33 3.1.2 晶體結構 35 3.2 二硫化鉬與二硒化鉬奈米元件塊材元件備製及厚度分析 39 3.2.1 二硫化鉬與二硒化鉬奈米元件製作 39 3.2.2 利用原子力顯微鏡 (AFM) 定義層狀奈米元件厚度 41 3.2.3 二硫化鉬與二硒化鉬塊材結構元件製作 42 3.3 二硫化鉬與二硒化鉬元件之歐姆接觸與暗電導分析 43 3.4 二硫化鉬與二硒化鉬光電導量測 44 3.4.1 高頻率時間解析之載子活期量測 45 3.4.2 功率相依之載子活期量測 50 3.4.3 溫度相依之載子活期量測 54 第四章 結論 61 參考文獻 62

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. Y. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, " Two-dimensional gas of massless Dirac fermions in graphene," vol. 438,doi:10.1038,(2005)
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10451-10453, July 2005.
[3] A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nat. Mater., vol. 6, no. 3, pp. 183-191, Mar 2007.
[4] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano, vol. 7, no. 4, pp. 2898-2926, Apr 2013
[5] Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides,” Nat. Nanotech., vol. 7, no. 11, pp. 699-712, Nov 2012.
[6] S. Das, R. Gulotty, A. V. Sumant, and A. Roelofs, “All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor,” Nano Lett., vol. 14, no. 5, pp. 2861-2866, May 2014.
[7] B. Radisavljevic, A. Radenovic, J. Brivio, V.Giacometti, and A. Kis, “Single-Layer MoS2 Transistors,” Nat. Nanotech., vol. 6, no. 3, pp. 147-150, Mar 2011.
[8] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices,” Nat. Nanotech., vol. 6, no. 11, pp. 826-830, Nov 2013.
[9] W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M.L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures,” Sci. Rep., vol. 4, p. 3826, Jan 2014.
[10] C. J. Liu, S. Y. Tai, Y. C. Yu, K. D. Chang, S. Wang, F. S. S. Chien, J. Y. Lin, and T. W. Lin, “Facile Synthesis of MoS2/Graphene Nanocomposite with High Catalytic Activity Toward Triiodide Reduction in Dye-Sensitized Solar Cells,” J. Mater. Chem., vol. 22, no. 39, pp. 21057-21064, Aug 2012.
[11] Min, S., Lu, G. Sites for High efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-The role of graphene. J. Phys. Chem. C 116, 25415-25424 (2012).
[12] Xiang, Q., Yu, J., Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575-6578 (2012).
[13] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A. Single-layer MoS2 transistors. Nat Nanotechnol. 6, 147-150 (2011).
[14] Radisavljevic, B., Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater. 12, 815-820 (2013).
[15] Liu, H., Neal, A. T., Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563-8569 (2012).
[16] Wu, W. et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys. Lett. 102, 142106 (4 pages) (2013).
[17] 許樹恩和吳泰伯, “X光繞射原理與材料結構分析” ,彩言商業設計社,2004.
[18] B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction,”Prentice Hall, New Jersey (2001)
[19] A. Beiser, “Concepts Of Modern Physics,”McGraw-Hill Education (India) Pvt Limited (2003).
[20] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development,”IEEE Trans. Electron. Packag. Manuf., Vol. 26, pp. 141–149, (2003).
[21] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,”J. Micromech. Microeng., Vol. 14, pp. R15–R34, (2004).
[22] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams,”Small, Vol. 1, pp. 924–939, (2005).
[23] F. Braet, R. De Zanger, and E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells,”Journal of Microscopy, Vol. 186, pp. 84–87, (1997)
[24] Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,”Appl. Phys. Lett., Vol. 91970, pp.211102 (2010).
[25] C. Y. Nam, D. Tham, J. E. Fischer, “Disorder effects in focused-ionbeam-deposited Pt contacts on GaN nanowires,”Nano Lett., Vol. 5, pp. 2029-2033 (2005)
[26] K. K. Kam and B. A. Parkinson, “Detailed Photocurrent Spectroscopy of the Semiconducting Group VIB Transition Metal Dichalcogenides,” J. Phys. Chem., vol. 86, no. 4, pp. 463-467, Feb 1982.
[27] Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)
[28] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2”, Nano Lett., Vol.12, No.11, pp.5579-5580, 2012
[29] Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385-1390 (2012)
[30] Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385-1390 (2012)
[31] S. Vishwanath, X. Liu, S. Rouvimov, P. CMende, A. Azcatl, S. McDonnell, R. M. Wallace, R. M. Feenstra, J. K. Furdyna,
D. Jena, H. G. Xing, “Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and grapheme”, 2D Mater. 2, 2015
[32] 蕭名登, “二硫化鉬層狀半導體之表面電子聚集效應與電傳輸特性”2017, 國立台灣科技大學應用科技研究所碩士學位論文
[33] 張郁欣, “二硒化鉬層狀半導體之二維電傳輸特性”2018, 國立台灣科技大學應用科技研究所碩士學位論文
[34] P. Bhattacharya,“Semiconductor Optoelectronic Devices,” Prentice Hall, New Jersey, vol. 8, pp. 346-351, 1997.
[35] M. Razeghi and A. Rogalski, “Semiconductor Ultraviolet Detectors,” J. Appl. Phys., vol. 79, no. 15, pp. 7433-7473, May 1996.
[36] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh Photocurrent Gain in M-Axial GaN Nanowires,” Appl. Phys. Lett., vol. 91, p. 223106, Nov 2007.
[37] S. Yang, S. Tongay, Q. Yue, Y. Li, B. Li, and F. Lu, “High-Performance Few-Layer Mo-Doped ReSe2 Nanosheet Photodetectors,” Sci. Rep., vol. 4, p. 5442, Jun 2014.
[38] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors,” ACS Nano, vol. 6, no. 7, pp. 5988-5994, Jun 2012.
[39] X. Zhou, Q. Zhang, L. Gan, H. Li, and T. Zhai, “Large-Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors,” Adv. Funct. Mater., vol. 26, no. 24, pp. 4405-4413, Jun 2016.
[40] F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. I. Fal’ko, and K. Tanigaki, “High-Sensitivity Photodetectors Based on Multilayer GaTe Flakes,” ACS Nano, vol. 8, no. 1, pp. 752-760, Jan 2014.
[41] J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, and Z. Liu, “Controlled Synthesis of High-Quality Monolayered α–In2Se3 via Physical Vapor Deposition,” Nano Lett., vol. 15, no. 10, pp. 6400-6405, Sep 2015.
[42] N. Perea-López, A. L. Elias, A. Berkdemir, A. Castro-Beltran, H. R. Gutierrez, S. Feng, R. Lv, T. Hayashi, F. Lopez-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor Device Based on Few-Layered WS2 Films,” Adv. Funct. Mater., vol. 23, no. 44, pp. 5511-5517, Nov 2013.
[43] M. Hafeez, L. Gan, H. Li, Y. Ma, and T. Zhai, “Large-Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors,” Adv. Funct. Mater., vol. 26, no. 25, pp. 4551-4560, Jul 2016.
[44] T. J. Octon, V. K. Nagareddy, S. Russo, M. F. Craciun, and C. D. Wright, “Fast High-Responsivity Few-Layer MoTe2 Photodetectors,” Adv. Opt. Mater., vol. 4, no. 11, pp. 1750-1754, Aug 2016.
[45] W. Luo, Y. Cao, P. Hu, K. Cai, Q. Feng, F. Yan, T. Yan, X. Zhang, and K. Wang, “Gate Tuning of High-Performance InSe-Based Photodetectors Using Graphene Electrodes,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1418-1423, Oct 2015.
[46] J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taiguchi, S. Tongay, M. F. Crommie, and F. Wang, “Observation of Ultralong Valley Lifetime in WSe2/MoS2 Heterostructures,” Sci. Adv., vol. 3, no. 7, p. e1700518, Jul 2017.
[47] S. Ghosh, P. D. Patil, M. Wasala, S. Lei, A. Nolander, P. Sivakumar, R. Vajtai, P. Ajayan, and S. Talapatra, “Fast Photoresponse and High Detectivity in Copper Indium Selenide (Cu/In7Se11) Phototransistors,” 2D Materials, vol. 5, no.1, p. 015001, Mar 2018.
[48] G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, J. Lou, and H. Peng, “Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application,” Nano Lett., vol. 15, no. 1, pp. 506-513, Jan 2015.
[49] H. C. Yang, T. Y. Lin, and Y. F. Chen, “Persistent Photoconductivity in InGaN/GaN Multiquantum Wells,” Appl. Phys. Lett., vol. 78, no. 3, pp. 338-340, Jan 2001.
[50] I. Mahboob, T. D. Veal, and C. F. McConville, “Intrinsic Electron Accumulation at Clean InN Surfaces”, Phys Rev Lett., Vol. 92, pp. 036804, 2004
[51] 樊政軒, “二硫化鉬與硒化銦之高頻時間解析光電導研究” 2018, 國立台灣科技大學光電工程研究所碩士學位論文

無法下載圖示 全文公開日期 2024/07/25 (校內網路)
全文公開日期 2024/07/25 (校外網路)
全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE