簡易檢索 / 詳目顯示

研究生: 胡壹翔
Yi-Hsiang Hu
論文名稱: 氫氣前處理泡沫鎳基板於電雙層電容與擬電容之影響研究
The Effect of H2 Thermal Pretreatment on Nickel Foam Substrates for Electrical Double Layer Capacitor and Pseudo-capacitor Studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
許正良
Cheng-Liang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 142
中文關鍵詞: 超奈米鑽石奈米碳管石墨相氮化碳二硫化鉬超級電容
外文關鍵詞: Ultra-nanocrystalline diamond, Carbon nanotubes, Molybdenum disulfide, Graphite Carbon Nitride, Supercapacitor
相關次數: 點閱:436下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為以兩個章節分為六個部分來討論,第一章為探討奈米碳管複合參氮超奈米鑽石結晶(N-UNCD)於泡沫鎳基板的超級電容特性分析,第一部分為摻氮超奈米鑽石於泡沫鎳基板並探討在相同的製程時間中將製程分為兩段進行的比較。第二部分與上一部分相同,差別在於將泡沫鎳基板進行氫氣前處理。第三部分則是延續上一章節,將超奈米鑽石作為碳源誘導成長奈米碳管並量測其電容特性及穩定性分析。
    第二章為石墨相氮化碳參雜二硫化鉬於泡沫鎳基板的超級電容特性分析。
    第四部分則是以不同硫鉬源濃度的水熱法合成二硫化鉬並比較泡沫鎳基板在有無氫氣前處理的情況下的型態差別與電容表現。第五部分是比較不同水熱成長時間的二硫化鉬並比較泡沫鎳基板在有無氫氣前處理的情況下的型態差別與電容表現。第六部分則延續第五部分並加入石墨相氮化碳,量測其電容表現及充放電穩定性。
    將以上六部分的實驗結論歸納如下:
    從FE-SEM可看出超奈米鑽石結晶在不同時間的成長下,有著不同的樣貌。而在5分鐘時,超奈米鑽石都還是顆粒狀的鑽石團,並未成膜。而隨製程時間增加其團簇比例與大小隨之增加並在20分鐘時成膜,在成長時間為5分鐘時具有最好的比電容值3.81 F/g 。若將電漿分兩次進行,其表面型態從原本的偏針狀團簇變為較為圓滑的球狀團簇,且比電容值均大幅提升,在兩次10分鐘電漿時有最好的比電容值5.0 F/g。氫處理的泡沫鎳基板明顯能有更好的電容量表現,但若將掃描速率提升,經過氫氣處理的泡沫鎳基板的CV曲線面積則無明顯的上升,猜測是因為泡沫鎳經過氫處理後磁性增大,導致電荷傳遞方式為物理性的吸附的電雙層電容在傳遞電荷時造成阻礙,所以在提高掃描速率的時候所傳遞的電荷無明顯提升在,兩次5分鐘電漿得氫處理泡沫鎳時有最好的比電容值15.52 F/g。
    以泡沫鎳作為催化劑誘導成長奈米碳管,可省下濺鍍金屬的時間,大大的降低了製程所需時間,且成長奈米碳管後其電容值大幅度的上升至198.1 F/g。
    不管是奈米碳管或超奈米鑽石,在經過多次充放電後均會提升其比電容值表現,超奈米鑽石在經過3000次充放電循環後電容值大約提升至原本的120%,而奈米碳管複合奈米鑽石結構能夠在經過3000次充放電循環後電容值大約提升至原本的230%,且在拉曼圖表明在經過充放電後其石墨品質有所提升。
    以泡沫鎳為基板水熱法合成二硫化鉬在適當的濃度下比電容值能達到494.2 F/g,若以氫處理過後的泡沫鎳做為基板則電容值能達到528.5 F/g,且底部結構由片狀變為針狀,大大提升接觸面積。在加入石墨相氮化碳後電容值提升至643.1 F/g,且在3000次充放電穩定性測試中穩定性由65.1%提升至83.1%,表明石墨相氮化碳的加入大大增加了其結構穩定性及電性表現。


    In this study, we report supercapacitor based on combination of Ultra-nanocrystalline diamond (N-UNCD) and carbon nanotubes (CNTs), molybdenum disulfide (MoS2) and Graphite Carbon Nitride (g-C3N4) via an innovative process. More briefly, we divide this study into four parts. The first part deals with N-UNCD growth in different time duration to measure electrochemistry properties. The second part we use N-UNCD as the only carbon source, Nickel foam as catalyst and using thermal CVD process to grow CNTs without CH4 gas. Because the only carbon source is N-UNCD, it is envisioned to that the as-grown CNTs are derived from N-UNCD, and then, we used this structure to measure electrochemistry properties. The third part we used different amount of sodium molybdate and thiourea using hydrothermal to growth MoS2 to measure electrochemistry properties. The fourth part we add g-C3N4 powder in sodium molybdate and thiourea solution and measure electrochemistry properties. From the overall studies, we revealed that the as-prepared CNTs/N-UNCD and g-C3N4/MoS2 based supercapacitor,for EDLC exhibit enhanced specific capacitance of 4000% compared to those of N-UNCD (4.95 F/g), CNT/N-UNCD (198.1 F/g) based EDLC and it shows very good stability which fas 233% capcitance retention after 3000 cycles . ,for Pseudo-capacitance exhibit high specific capacitance of MoS2 (506.1 F/g), g-C3N4/MoS2 (643.1 F/g) and it shows good stability which fas 83.5% capcitance retention after 3000 cycles .

    目錄 第一章 緒論 1 1.1前言 1 1. 2研究動機 2 第二章 文獻探討 3 2. 1 鑽石薄膜之特性簡介 3 2.1.1鑽石薄膜基本性質及結構 3 2.1.2 超奈米鑽石成長機制 4 2.1.3奈米結晶鑽石 5 2.2 奈米碳管特性簡介 6 2.2.1 奈米碳管特性 6 2.2. 2奈米碳管合成方法 9 2.2. 3奈米碳管成長機制 12 2. 3二硫化鉬特性簡介 14 2.3. 1二硫化鉬的基本性質與結構 14 2.3. 2二硫化鉬成長機制與製備方法 14 2.3. 3二硫化鉬的特性 17 2. 4石墨相氮化碳特性簡介[31] 17 2.4.1石墨相氮化碳的基本性質與結構 17 2.4.2石墨相氮化碳的製備方法 18 2.5超級電容器種類與機制 19 2.5.1超級電容器簡介 19 2.5.2電雙層電容(Electrical double-layer capacitors, EDLCs) 19 2.5.3擬電容(Pesudocapacitive) 20 第三章 實驗方法 22 3.1 實驗設計與流程 22 3.2製備之材料介紹 25 3.3泡沫鎳基板清洗 26 3.4微波電漿化學氣相沉積法成長超奈米鑽石 26 3.5化學氣相沉積法成長高穩定性奈米碳管 28 3.6 成長二硫化鉬 29 3.7 成長石墨相氮化碳 30 3.8泡沫鎳氫氣前處理 30 3.9儀器設備與材料分析方法 31 3.9.1 場發射掃描式電子顯微鏡(FE-SEM) 31 3.9.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 32 3.9.3 拉曼光譜儀(Raman Spectrum) 32 3.9.4 D2 PHASER X光繞射儀 34 3.9.5 電化學分析儀 (Electrochemical Workstation) 36 第四章 奈米碳管-超奈米鑽石複合泡沫鎳結構分析與超級電容特性 38 4.1 超奈米鑽石特性分析 38 4.1.1 表面型態分析 38 4.1.2 拉曼光譜儀分析 41 4.1.3 循環伏安法分析 44 4.1.4 電化學阻抗測試 49 4.2 超奈米鑽石複合氫氣前處理泡沫鎳特性分析 51 4.2.1 表面型態分析 51 4.2.2 表面型態分析 54 4.2.3 循環伏安法分析 60 4.2.4 電化學阻抗測試 66 4.3 超奈米鑽石誘導成長奈米碳管之特性分析 68 4.3.1 表面型態分析 69 4.3.2 拉曼光譜儀分析 71 4.3.3 超奈米鑽石誘導成長奈米碳管超級電容特性 73 4.3.4 電化學阻抗測試 78 4.4超奈米鑽石誘導成長奈米碳管泡沫鎳結構超級電容之充放電穩定性分析 80 第四章總結 84 第五章 二硫化鉬-石墨相氮化碳(g-C3N4-MoS2)複合泡沫鎳基板之擬電容特性分析 85 5.1 不同硫源鉬源含量之二硫化鉬複合泡沫鎳結構分析與超級電容特性 85 5.1.1 表面型態分析 85 5.1.2 X射線繞射儀分析 88 5.1.3 不同硫源鉬源含量之二硫化鉬複合泡沫鎳結構擬電容特性 89 5.2 不同水熱成長時間之二硫化鉬複合泡沫鎳結構分析與超級電容特性 96 5.2.1 表面型態分析 96 5.2.2 能量色散X射線光譜(EDS) 99 5.2.3 不同水熱成長時間之二硫化鉬複合泡沫鎳結構擬電容特性 106 5.2.4 電化學阻抗測試 111 5.3 二硫化鉬-石墨相氮化碳複合泡沫鎳基板之擬電容特性分析 114 5.3.1 表面型態分析 114 5.3.2二硫化鉬摻雜石墨相氮化碳複合泡沫鎳結構擬電容特性 116 5.3.3 電化學阻抗測試 119 5.4 g-C3N4-MoS2/H-NiF充放電穩定性分析 121 第五章總結 123 第六章 結論與未來展望 124 6.1 結論 124 6.2 未來展望 126 參考文獻 127

    [1]. Xueying Kou, Ning Xie, Fang Chen, Tianshuang Wang, Lanlan Guo, Chong Wang, Qingji Wang, Jian Ma, Yanfeng Sun, Hong Zhang, Geyu Lu, “ Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping”, Sensors and Actuators B 256 (2018) 861–869.
    [2]. R. Sankar Ganesha,b, M. Navaneethanb,c, V.L. Patil d, S. Ponnusamy b, C. Muthamizhchelvanb, S. Kawasaki e, P.S. Patil d, Y. Hayakawaa,c, “ Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature ”, Sensors and Actuators B 255 (2018) 672–683.
    [3]. C.W. Zou, J. Wang, W. Xie, “ Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/ TiO2 nanoparticles heterojunction composites ”, Journal of Colloid and Interface Science 478 (2016) 22–28.
    [4]. H. W. Kroto , J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, “ C60: Buckminsterfullerene ”, Nature, 318(No.6042), 162-163,(1985).
    [5]. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F., “ Photoinduced electron transfer from a conducting polymer to buckminsterfullerene ”, Science. Nov 27 ; 258 (5087) : 1474-6 (1992).
    [6]. Ayrat M. Dimiev and James M. Tour. “ Mechanism if Graphene Oxide Formation.
    [7]. S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, “ Vapor Depositiion of Diamond Particles from Methane ” Japanese J.Appl. Phys. (1992) 1562.
    [8]. Lin, C. R., et al. “ Development of high-performance UV detector using nanocrystalline diamond thin film ” International Journal of Photoenergy (2014)
    [9]. Suneet Arora, V.D. Vankar, “ Field emission characteristics of microcrystalline diamond films:Effect of surface coverage and thickness ” Thin Solid Films (2006) 1963.
    [10]. S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park IEEE (1996) 526.
    [11]. 曾永華、陳柏穎、鄭宇明、游銘永,“人造鑽石的合成及應用”,科學發展497期,一百零三年五月。
    [12]. S.Iijima, “ Helical microtubles of graphitic carbon ” Nature,345(1991),56
    [13]. R.Saito, G.Dresselhaus, M.S.G.Dresselhaus, “ Physical Properties of Carbon Nanotubes ”,Imperial College Press,London,1998.
    [14]. N.Hamada, S.Sawda, A.Oshiyama, “ New one-dimensional conductors: Graphitic microtubules ” Phys.Rev.Lett.,68,1581,1992
    [15]. R.Saito , M.Fujita, G.Dresselhaus, M.S.G.Dresselhaus, “ Electronic structure of chiral graphene tubules ” Appl. Phys. Lett., 60, 2204,1992
    [16]. J. Justin Gooding, “ Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing”, Electrochimica Acta 50 (2005) 3049–3060.
    [17]. J. Lu, “ Carnon Nanotubes - “ The Material for the new Millennium, in The International Conference on Novel Formation Mechanisms and Physical Properties ”.
    [18]. Yahachi Saito, Sashiro Uemura , Carbon 38(2000), 169.
    [19]. Tailoring graphite with the goal of achieving single sheetsXuekun Lu, Minfeng Yu, Hui Huang and Rodney S Ruoff. Electric Field Effect in Atomically Thin Carbon FilmsScience 22 Oct 2004
    [20]. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates.Nano Lett., 12 (2012), pp. 1538-1544
    [21]. van der Waals epitaxy of MoS2 layers using graphene as growth templates.Nano Lett. (2012), pp. 2784-2791,
    [22]. Atomically thin layers of MoS2 via A two step thermal evaporation-exfoliation method.Nanoscale, 4 (2012), p. 461,
    [23]. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition.Adv. Mater. (2012), pp. 2320-2325,
    [24]. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate.Small, 8 (2012), pp. 966-971,
    [25]. Large area single crystal (0001) oriented MoS2.Appl. Phys. Lett., 102 (2013)
    [26]. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10 (2010), p. 1271,
    [27]. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 3 (2012), p. 887
    [28]. Stretching and breaking of ultrathin MoS2. ACS Nano, 5 (2011), pp. 9703-9709
    [29]. A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures.Volume 128, April 2019, Pages 274-297
    [30]. Dong, G., et al. (2014). "A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 20: 33-50.
    [31]. J. Sehnert, K. Baerwinkel, J. Senker. J. Phys. Chem. B, 111 (2007), pp. 10671-10680
    [32]. A. Snis, S.F. Matar .Phys. Rev. B, 15 (1999), pp. 10855-10863
    [33]. Y. Wang, X.C. Wang, M. Antonietti. Angew. Chem. Int., 51 (2012), pp. 68-89
    [34]. B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick. J. Am. Chem. Soc., 125 (2003), pp. 10288-10300
    [35]. High-pulse power needs spur demand for supercapacitors.By Bettyann Liotta 04.16.2001
    [36]. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHsElectrochimica Acta. Volume 51, Issue 28, 15 September 2006, Pages 6510-6520
    [37]. Bian, J., et al. (2015). "Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications." Nano Energy 15: 353-361.
    [38]. Dong, G., et al. (2014). "A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 20: 33-50
    [39]. Gao, F. and C. E. Nebel (2016). "Diamond-Based Supercapacitors: Realization and Properties." ACS Appl Mater Interfaces 8(42): 28244-28254.
    [40]. Guo, Q., et al. (2003). "Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures." Chemical Physics Letters 380(1-2): 84-87.
    [41]. Joseph, N. and A. C. Bose (2019). "Metallic MoS2 grown on porous g-C3N4 as an efficient electrode material for supercapattery application." Electrochimica Acta 301: 401-410.
    [42]. Liu, Y., et al. (2019). "High performance hybrid supercapacitor based on hierarchical MoS2/Ni3S2 metal chalcogenide." Chinese Chemical Letters 30(5): 1105-1110.
    [43]. Qiu, H., et al. (2019). "Excellent performance MWCNTs-GONRs/Ni(OH)2 electrode for outstanding supercapacitors." Ceramics International 45(15): 18422-18429.
    [44]. Roy, A., et al. (2018). "NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction." Electrochimica Acta 283: 327-337.
    [45]. Salunkhe, R. R., et al. (2015). "Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application." Nano Energy 11: 211-218.
    [46]. Scorsone, E., et al. (2017). "Porous diamond pouch cell supercapacitors." Diamond and Related Materials 76: 31-37.
    [47]. Varga, M., et al. (2017). "Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies." Carbon 111: 54-61.
    [48]. Wang, J., et al. (2020). "Hybrid supercapacitors from porous boron-doped diamond with water-soluble redox electrolyte." Surface and Coatings Technology 398.
    [49]. Wang, J., et al. (2020). "High-performance 2.6 V aqueous symmetric supercapacitor based on porous boron-doped diamond via regrowth of diamond nanoparticles." Carbon 160: 71-79.
    [50]. Xu, J., et al. (2019). "g-C3N4 anchored with MoS2 ultrathin nanosheets as high performance anode material for supercapacitor." Materials Letters 241: 35-38.
    [51]. Yu, J., et al. (2018). "Electrochemical properties and sensing applications of nanocarbons: A comparative study." Carbon 129: 301-309.
    [52]. Zanin, H., et al. (2014). "Porous boron-doped diamond/carbon nanotube electrodes." ACS Appl Mater Interfaces 6(2): 990-995.
    [53]. Zhao, C., et al. (2016). "MoS2/RGO/Ni3S2 Nanocomposite in-situ Grown on Ni Foam Substrate and Its High Electrochemical Performance." Electrochimica Acta 198: 135-143.
    [54]. Zinin, P. V., et al. (2009). "Ultraviolet and near-infrared Raman spectroscopy of graphitic C3N4 phase." Chemical Physics Letters 472(1-3): 69-73.
    [55]. F. Gao, M.T. Wolfer, C.E. Nebel, Highly porous diamond foam as a thin-film micro supercapacitor material, Carbon 80 (2014) 833–840.
    [56]. F. Gao, C.N. Nebel, Diamond-based supercapacitors: realization and properties, ACS. Applied Materials & Interfaces,
    [57]. Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications Pages A107-A113
    [58]. An asymmetric supercapacitor with good electrochemical performances based on Ni(OH)2/AC/CNT and AC Electrochimica Acta Volume 182, 10 November 2015, Pages 1159-1165
    [59]. Two-Dimensional Water-Coupled Metallic MoS2 with Nanochannels for Ultrafast SupercapacitorsNano Lett. 2017, 17, 3, 1825–1832 Publication Date:January 27, 201
    [60]. 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor Chemical Engineering Journal.Volume 366, 15 June 2019, Pages 163-171
    [61]. g-C3N4 anchored with MoS2 ultrathin nanosheets as high performance anode material for supercapacitor Materials Letters. Volume 241, 15 April 2019, Pages 35-38

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE