簡易檢索 / 詳目顯示

研究生: 董哲惟
Che-wei Tung
論文名稱: 研製和量測有二氧化矽電流阻擋層的氮化鎵發光二極體
Fabrication and Characterization of GaN Light Emitting Diodes with SiO2 Current-Blocking Layer
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 胡能忠
Neng-Chung Hu
趙良君
Liang-Chiun Chao
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 92
中文關鍵詞: 氮化鎵發光二極體電流阻擋層氧化銦錫電流分佈
外文關鍵詞: GaN, LED, CBL, ITO, Current spreading
相關次數: 點閱:228下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 改善氮化鎵發光二極體(GaN Light-Emitting Diode)的電流分佈,來得到高發光效率的元件一直是近來年研究的重要議題之一,在使用藍寶石基板(Sapphire)作為發光二極體元件的基板時,因為藍寶石基板並不導電,所以使得p型與n型電極必須位於同一面,使得電流從p型電極橫向流至n型電極時,容易產生電流擁擠效應。並且在p型電極下方主動區電子電洞複合所發出的光子,會因為位於其上方的p型電極為不透光的材質所以被遮蔽或者是反射後被半導體材料所吸收,因此造成光輸出功率的損失。
    在實驗中製作並比較不同結構的元件,並量測發光二極體的I-V,L-I曲線,在結構上為了改善電流擁擠效應設計了不同的光罩圖形,使得p型到n型電極的電流,流經的路徑長度一致,來增加電流的均勻性,並且使用ITO(Indium tin oxide)做為透明導電層,而為了要使流經電極下方的電流能夠被有效的利用,在電極下方鍍製二氧化矽做為電流阻擋層來改善電極下方的光被遮蔽或者吸收的問題。
    使用新設計的電極在有ITO的情況下輸出光功率提升了兩倍(ITO與p型電極面積比為6.84倍),而加上電流阻擋層後在相同操作電流下,發光二極體輸出光功率提升了7.5%( p型電極與高台面積比為0.11倍)。


    Improving non-uniform current spreading of GaN light emitting diodes (LED) to obtain high light-output efficiency is one of the most important issues in the LED industry. Because sapphire is an insulating substrate, both the p-type and n-type contacts are usually located on the same side of the chip. As a result, the current flows laterally according to the voltage and resistance distribution and tends to crowd around electrodes if no special design is made. In addition, the light generated in the active region beneath the opaque p-pad metal contact is blocked. It reduces the extraction efficiency of the LED.
    In this research, we made various devices of different processes and structures. The resulted LED’s I-V and L-I curves were measured and compared. We designed a new mask pattern and developed ITO process to obtain a uniform current spreading, and used silicon dioxide as a current-blocking layer(CBL) under the p-pad to increase the light-output power.
    The resulted L–I curves exhibit two times increase in the output power for LED with ITO layer and 7.5% increase for LED with CBL structure over the conventional diodes at the same bias current, while the associated area ratios in the mask design are 6.84(ITO/p-pad) and 0.11(p-pad/mesa), respectively.

    中文摘要I ABSTRACTII 誌謝III 目錄IV 圖片目錄VII 表格目錄X 第一章緒論1 1.1氮化鎵材料發展與介紹3 1.2背景與文獻回顧8 第二章發光二極體原理介紹15 2.1發光二極體原理簡述15 2.1.1輻射轉換15 2.1.2發光效率17 2.1.3光射出錐19 2.1.4電流擁擠效應(Current crowding)24 2.2發光效率改善方法27 2.2.1表面粗化(Textured Surface)27 2.2.2光子晶體(photonic Crystals)29 2.2.3電子阻擋層(Electron-blocking layers)30 2.2.4背面反射鏡(Backside reflector)31 2.2.5球型封裝(Domed packaging)32 第三章發光二極體元件設計33 3.1電流擴散理論33 3.2透明導電層(transparent conductive layer)38 3.3電極設計影響42 3.4電流阻擋層結構設計45 第四章元件製程46 4.1製程儀器介紹47 4.1.1射頻濺鍍機(RF Sputter)47 4.1.2電子束蒸鍍機 (E-beam evaporator)49 4.2元件製程51 4.2.1氮化鎵發光二極體製作流程51 4.2.2試片清洗53 4.2.3微影製程54 4.2.4電流阻擋層(CBL)結構57 4.2.5活化製程58 4.2.6高台圖形(Mesa)製作59 4.2.7n型電極製作60 4.2.8透明導電層製作(Transparent Conductive Layer, TCL)製作62 4.2.9p型電極製作63 第五章結果與討論65 5.1不同退火溫度的ITO特性變化66 5.2有無ITO的影響71 5.3SiO2 CBL影響77 結論與未來發展方向82 參考文獻84

    [1] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., Vol. 81, No. 3, pp. 1246-1248, 2002.

    [2] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev , F. Bechstedt , A.V. Mudryi, E. E. Halle, “Absorptionand Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Physica Status Solidi, B Vol. 229, No. 3, pp. R1~R3, 2002.

    [3] H. J. Round “A note on carborundum,” Electrical World, Vol. 49, No. 6, pp. 309, 1907.

    [4] O. V. Lossev , “Luminous carborundum detector and detection effect and oscillations with crystals,” Phil. Mag., Vol. 6, pp. 1024-1044, 1928.

    [5] R. M. Potter, J. M. Brank and A. Addamiano “Silicon carbide light-emitting diodes,” J. Appl. Phys., Vol. 40, No. 5 , pp. 2253-2257, 1969.

    [6] J. A. Edmond, H.-S. Kong, and C. H. Carter Jr., Blue LEDs, “UV photodiodes and high-temperature rectifiers in 6H-SiC,” Physica B, Vol. 185, pp. 453-460, 1993.

    [7] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson “Coherent Light Emission from GaAs Junctions,” Phys. Rev. Lett., Vol. 9, No. 9, pp. 366-368 , 1962.

    [8] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phy. Lett., Vol. 1, pp. 62-64, 1962.

    [9] J. Pankove, J. E. Berkeyheiser, “A light source modulated at microwave frequencies,” Proc. IRE , Vol. 50, pp. 1976-1977, 1962.

    [10] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeiger, “Semiconductor maser of GaAs,” Appl. Phy. Lett., Vol. 1, pp. 91-92, 1962.

    [11] N. Holonyak, Jr., and S. F. Bevacqua, “Coherent (Visible) Light Emission from Ga(As1-xPx) Junctions,” Appl. Phys. Lett., Vol. 1, pp. 82-83, 1962.

    [12] J. W. Allen, M. E. Moncaster, and J. Starkiewicz, “Electroluminescent devices using carrier injection in gallium phosphide,” Solid-State Electron, Vol. 6, pp. 95-102, 1963.

    [13] H. H ahn, R. Juza, “On the crystal structure of Cu3N, GaN and InN (translated from German),” Zeitschrift fur anorganische und allgemeine Chemie, Vol. 239, pp. 282-287, 1938.

    [14] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN,” Appl. Phys. Lett., Vol. 15, No. 10, pp. 327-329, 1969.

    [15] J.I. Pankove, J.E. Berkeyheiser, H.P. Maruska and J. Wittke, “Luminescent properties of GaN,” Solid State Commun, Vol. 8, pp. 1051-1053, 1970.

    [16] J.I. Pankove, H.P. Maruska, and J.E. Berkeyheiser, “Optical absorption of GaN,” Appl. Phys. Lett., Vol. 17, No. 5, pp. 197-199, 1970.

    [17] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN blue light-emitting diodes,” J. Lumin, Vol. 5, pp. 84-86, 1972.

    [18] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence,” Mat. Res. Bull., Vol. 7, pp. 777-781, 1972.

    [19] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., Vol. 48, pp. 353-355, 1986.

    [20] I. Akasaki, H. Amano, K. Hiramatsu, and N. Sawaki, “High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE,” Inst. Phys. Conf. Ser., No. 91, pp.633-636, 1988.

    [21] I. Akasaki, H. Amano, Y. Koide, K. Kiramatsu, and N. Sawaki, “Effects of an AlN buffer layer on crystallographic structure and on electrical and optical properites of GaN and Ga1-xAlxN (0<x0.4) films grown on sapphire substrates by MOVPE, ” J. Crystal Growth, Vol. 98, pp.209-219, 1989.

    [22] H. Amano, M. Kito, K. Hiramatsu, and I.Akasaki, “P-type conduction in Mg-doped GaNtreated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114, 1989.

    [23] S. Nakamura and G. Fasol, “The Blue Laser Diode, ” Berlin, Springer, 1997.

    [24] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., Vol. 31, pp. L139-L142, 1992.

    [25] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama “High-brightness InGaN blue, green, and yellow lightemitting diodes with quantum well structures,” Jpn. J. Appl. Phys., Vol. 34, pp. L797-L799, 1995.

    [26] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., Vol. 69, No. 26, pp.4056-5408, 1996.

    [27] R. D. Dupuis, and M. R. Krames, “History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes,” Journal of Lightwave Technology, Vol. 26, No. 9, pp.1154-1171, 2008.

    [28] P. Mottier “LEDs for Lighting Applications,” John Wiley & Son , 2009.
    [29] S. Y. Kim, H. W. Jang, and J. L. Lee, “Effect of an indium-tin-oxide overlayer on transparent Ni/Au ohmic contact,” Appl. Phys. Lett., Vol. 82, pp.61-63, 2003.

    [30] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. F. Chen, J. K. Sheu, and J. M. Tsai, “GaN-Based Light Emitting Diodes with Si-Doped In0.23Ga0.77N/GaN,” Jpn. J. Appl. Phys., Vol. 42, pp.2270-2272, 2003.

    [31] M. Koike, N. Shibata, H. Kato, and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications,” IEEE J. of Selected Topics in Quantum Electronics, Vol. 8, pp.271-277, 2002.

    [32] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 71, No. 18, pp. 2638-2640, 1997.

    [33] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., Vol. 92, pp. 2248-2250, 2002.

    [34] C. M. Lee, C. C. Chuo, Y. C. Liu, I. L. Chen, and J. I. Chyi, “InGaN-GaN MQW LEDs WithCurrent Blocking Layer Formed by Selective Activation,” IEEE Electron. Dev. Lett., Vol. 25, pp. 384-386, 2004.

    [35] H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen “InGaN/GaN Light Emitting Diodes with a Lateral Current Blocking Structure,” Jpn. J. Appl. Phys., Vol. 43, pp. 2006-2008, 2004.

    [36] H. Y. Lee, K. H. Pan, C. C. Lin, Y. C. Chang, F. J. Kao, and C. T. Lee, “Current spreading of III-nitride light-emitting diodes using plasma treatment,” J. Vac. Sci. Technol. B, Vol. 25, pp. 1280-1283, 2007.

    [37] T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and H. Kuan, “Current Spreading and Blocking Designs for Improving Light Output Power from the Vertical-Structured GaN-Based Light-Emitting Diodes,” IEEE Photon. Technol. Lett., Vol. 20, pp. 703, 2008.

    [38] M. A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang “Improving Light Output Power of the GaN-Based Vertical-Injection Light-Emitting Diodes by Mg+ Implanted Current Blocking Layer,” IEEE Photon. Technol. Lett., Vol. 21, No. 11, pp. 688, 2009.

    [39] C. F. Tsai, Y. K. Su, and C. L. Lin “Improvement in the Light Output Power of GaN-Based Light-Emitting Diodes by Natural-Cluster Silicon Dioxide Nanoparticles as the Current-Blocking Layer,” IEEE Photon. Technol. Lett., Vol. 21, No. 14, pp. 993, 2009.

    [40] E. Fred Schubert, “Light-emitting diode,” Cambridge University Press, 2003.

    [41] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and Hyunsang Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett., Vol.77, pp. 1903-1904, 2000.

    [42] H. Kim, S. J. Park, H. Hwang, and N. M. Park, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl. Phys. Lett., Vol. 81, pp. 1326-1328, 2002.

    [43] D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett., Vol. 73, No. 18, pp. 2654-2656, 1998.

    [44] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., Vol. 84, pp. 855-858, 2004.

    [45] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of External extractionefficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett., Vol. 29, pp. 658-660, 2009.

    [46] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda, “High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal,” Jpn J. Appl. Phys., Vol. 43, pp. 5809-5813, 2004.

    [47] S. Grzanka, G. Franssen, G. Targowski, K. Krowicki, T. Suski, R. Czernecki, P. Perlin, and M. Leszczyński, “Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes,” Appl. Phys. Lett., Vol. 90, pp. 103507, 2007.

    [48] C. S. Chang, S. J. Chang , Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei and H. M. Lo, “Nitride based Power Chip with Indium-Tin-Oxide p-Contact and Al Back-SideReflector,” Jpn. J. Appl. Phys. Lett., Vol. 44, No. 4B, pp. 2462-2464, 2005.

    [49] C. J. Nuese, J. J. Tietjen, J. J. Gannon, and H. F. Gossenberger, “Optimization of electroluminescent efficiencies for vapor-grown GaAsP diodes,” J. Electrochem. Soc., Vol. 116, pp. 248-253, 1969.

    [50] Thompson G. H. B. “Physics of Semiconductor Laser Devices,” John Wiley and Sons, 1980.

    [51] W. B. Joyce and S. H. Wemple, “Steady-State Junction-Current Distributions in Thin Resistive Films on Semiconductor Junctions,” Journal of Applied Physics, Vol. 41, No. 9, pp. 3818-3830, 1970.

    [52] M. Rattier, H. Benisty, R. P. Stanley, J-F Carlin, R. Houdré, U. Oesterle, C. J. M. Smith, C. Weisbuch, and T. F. Krauss “Toward Ultrahigh-Efficiency Aluminum Oxide Microcavity Light-Emitting Diodes: Guided Mode Extraction by Photonic Crystals,” IEEE J Sel Top Quantum Electron, Vol. 8, pp. 238-247, 2002.

    [53] C. J. Nuese, J. J. Tietjen, J. J. Gannon, and H. F. Gossenberger, “Optimization of electroluminescent efficiencies for vapor-grown GaAsP diodes,” J. Electrochem. Soc., Vol. 116, pp. 248-253, 1969.

    [54] J. Nishizawa, M. Koike and C. C. Jin, “Efficiency of GaAlAs heterostructure red light-emitting diodes,” J. Appl. Phys., Vol. 54, pp.2807-2812, 1983.

    [55] C. D. Moyer, “Photon recycling light emitting diode,” US Patent 4,775,876 , 1988.

    [56] W. O. Groves and A. S. Epstein, “Epitaxial deposition of III–V compounds containing isoelectronic impurities,” US Patent 4,001,056, 1977.

    [57] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., Vol. 57, pp. 2937-2939, 1990.

    [58] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., Vol. 58, pp. 1010-1012, 1991.

    [59] H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes,” Appl. Phys. Lett., Vol. 61, pp. 1775-1777, 1992.

    [60] S. Y. Kim, H. W. Jang, and J.-L. Lee, “High-brightness GaN-based light-emitting diode with indium tin oxide based transparent ohmic contact, ” J. Vac. Sci. Technol. B, Vol. 22, pp. 1851-1857, 2004.

    [61] 黃鶴 氮化鎵發光二極體與太陽能電池積體化的可行性研究

    [62] www.bridgelux.com/

    [63] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114, 1998

    [64] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., Vol. 31, pp. L139-L142, 1992.

    [65] S. Ruvimov, Z. Lilliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.-F. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN,” Appl. Phys. Lett., Vol. 69, pp. 1556-1558, 1996.

    [66] Abhishek Motayed, Ravi Bathe, Mark C. Wood, Ousmane S. Diouf, R. D. Vispute, and S. Noor Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys., Vol. 93, pp. 1087-1094, 2003.

    [67] R. N. Joshi, V. P. Singh, and J. C. McClure, “Characteristics of indium tin oxide films deposited by r.f. magnetron sputtering,” Thin Solid Films, Vol. 257, pp. 32-35, 1995.

    [68] T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films, Vol. 413, pp. 181-185, 2002.

    QR CODE