簡易檢索 / 詳目顯示

研究生: 蔡鎮鴻
Jhen-Hong Cai
論文名稱: 成長二氧化銥於碳纖維基板上應用於電雙層電容電極之研究
Characteristics of the electric double layer capacitances by using IrO2-coated on carbon nanotubes grown on carbon fibers
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
趙良君
Liang-Chiun Chao
邱博文
Po-Wen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 二氧化銥碳纖維電雙層電容電化學
外文關鍵詞: electric double layer capacitances, IrO2, carbon fibers, KOH
相關次數: 點閱:499下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電化學電容器因電子產業發展迅速, 能源需求增加, 愈顯得其重要性. 本實驗以碳纖維為基板, 在碳纖維上成長奈米碳管, 碳纖維上濺鍍二氧化銥及將二氧化銥濺鍍在碳纖維上之奈米碳管做為電化學電容器電極材料. 因碳纖維具有柔軟, 導電性佳及與奈米碳管良好之結合性. 且奈米碳管與二氧化銥具有高導電性及高化學穩定性, 並可利用其大比表面積性質增加與電解質之接觸面積, 因此可有效提高電化學電容特性. 本實驗以KOH溶液為電解質, 並利用二極及三極量測法量測其電化學電容特性, 其中以二極量測法測得碳纖維, 碳纖維上成長奈米碳管, 碳纖維上濺鍍二氧化銥及濺鍍二氧化銥於碳纖維上之奈米碳管電容值, 分別為 7.00×10-3, 6.94, 34.54及32.85 Fg-1, 若以三極量測法量測, 則可分別得到1.01×10-2, 35.71, 123.46及153.05 Fg-1電容值. 其中二氧化銥濺鍍於碳纖維基板及二氧化銥濺鍍在碳纖維上之奈米碳管電極材料, 其電容值表現較佳. 在電容充放電實驗中, 經過100次充放電後, 亦可保持穩定之電化學電容特性. 本實驗結果指出二氧化銥濺鍍於碳纖維基板及二氧化銥濺鍍在碳纖維上之奈米碳管皆為良好之電化學電極材料.


Electrochemical capacitors become more important because of rapid development of the electronic product and the increasing of the energy demand. In this study, we probed the electrochemical characteristics for carbon fibers, (carbon nanotubes, CNTs)/carbon fibers, IrO2/carbon fibers, and IrO2/CNTs/carbon fibers. Due to the advantages of carbon fibers such as flexure, curled surface, good electric properties, and easy-contact with carbon, carbon fibers were used as the substrate. CNTs and IrO2 presented high conductivity, chemical stability, and large surface area which increase the interactive area with electrolyte to enhance the capacitance of electrochemical capacitor. The supporting electrolyte was KOH solution. The measurements of electrochemical capacitor were 2-electrode system and
3-electrode system. The specific capacitance values of carbon fiber, CNTs/carbon fibers, IrO2/carbon fibers and IrO2/CNTs/carbon fibers electrodes were 7.00×10-3, 6.94, 34.54, 32.85 Fg-1 in 2-electrode system, and 1.01×10-2, 35.71, 123.46, 153.05 Fg-1 in 3-electrode system, respectively. The electrochemical measurements showed that the IrO2/carbon fibers and IrO2/CNTs/carbon fibers had good performances of electrochemical capacitors. We measured the electrodes by charge-discharge 100 cycles and found that they maintained electrochemical characteristics. The results indicate that the IrO2/carbon fibers and IrO2/CNTs/carbon fibers are excellent electrochemical electrodes.

摘要 (中文) ------------------------------------------------------------------I 摘要 (英文) -----------------------------------------------------------------II 致謝 (中文) ----------------------------------------------------------------III 目錄-------------------------------------------------------------------------IV 圖索引-----------------------------------------------------------------------VI 表索引-----------------------------------------------------------------------IX 第一章 緒論-------------------------------------------------------------------1 1.1 前言----------------------------------------------------------------------1 1.2 電化學電容器簡介----------------------------------------------------------3 1.3 超級電容器簡介------------------------------------------------------------4 1.4 電化學電容器工作原理------------------------------------------------------6 1.4.1 電雙層電容--------------------------------------------------------------6 1.4.2 擬電容------------------------------------------------------------------7 1.5 電化學電容器之電極材料----------------------------------------------------8 1.6 奈米碳管------------------------------------------------------------------9 1.7 二氧化銥-----------------------------------------------------------------10 1.8 電化學電容器的量測-------------------------------------------------------11 1.9 實驗動機-----------------------------------------------------------------14 1.9.1 碳纖維基板的優點-------------------------------------------------------14 1.9.2 奈米碳管加強對電容的應用-----------------------------------------------14 1.9.3 二氧化銥濺鍍於奈米碳管之應用-------------------------------------------14 第二章 實驗方法及步驟 -------------------------------------------------------15 2.1 實驗流程-----------------------------------------------------------------15 2.2 製備過程-----------------------------------------------------------------16 2.2.1 基板準備---------------------------------------------------------------16 2.2.2 電子束蒸鍍法-----------------------------------------------------------16 2.2.3 奈米碳管之成長條件-----------------------------------------------------17 2.2.4 二氧化銥之濺鍍---------------------------------------------------------19 2.3 分析與量測儀器-----------------------------------------------------------20 2.3.1 拉曼光譜儀-------------------------------------------------------------20 2.3.2 掃描式電子顯微鏡-------------------------------------------------------20 2.3.3 穿透式電子顯微鏡-------------------------------------------------------21 2.3.4 電化學特性分析---------------------------------------------------------22 第三章 結果與討論------------------------------------------------------------24 3.1 電極材料定性分析---------------------------------------------------------25 3.1.1 電極表面型態的觀察-----------------------------------------------------25 3.1.1.1 碳纖維電極之SEM圖----------------------------------------------------25 3.1.1.2 奈米碳管成長於碳纖維上之電極SEM圖------------------------------------26 3.1.1.3 二氧化銥濺鍍於碳纖維上之電極SEM圖------------------------------------27 3.1.1.4 二氧化銥濺鍍於碳纖維上之奈米碳管電極SEM圖----------------------------28 3.1.2 電極內部結構的觀察-----------------------------------------------------29 3.1.2.1 奈米碳管電極之TEM圖--------------------------------------------------29 3.1.2.2 二氧化銥濺鍍於碳纖維上之電極TEM圖------------------------------------29 3.1.2.3 二氧化銥濺鍍於奈米碳管上之電極TEM圖----------------------------------30 3.1.3 拉曼光譜儀分析---------------------------------------------------------30 3.2 電極電容性電性分析-------------------------------------------------------32 3.2.1 電極內部阻抗EIS的分析--------------------------------------------------32 3.2.1.1 碳纖維電極之EIS分析--------------------------------------------------32 3.2.1.2 奈米碳管之EIS分析----------------------------------------------------33 3.2.1.3 二氧化銥濺鍍於碳纖維上之EIS分析--------------------------------------33 3.2.1.4 二氧化銥濺鍍於奈米碳管上之EIS分析------------------------------------34 3.2.2 不同電極中循環伏安行為-------------------------------------------------35 3.2.2.1 碳纖維循環伏安行為---------------------------------------------------35 3.2.2.2 奈米碳管循環伏安行為-------------------------------------------------36 3.2.2.3 二氧化銥濺鍍於碳纖維基板上循環伏安行為-------------------------------36 3.2.2.4 二氧化銥濺鍍於奈米碳管上循環伏安行為---------------------------------37 3.2.3 不同電極之充放電行為---------------------------------------------------38 3.2.3.1 碳纖維充放電行為-----------------------------------------------------38 3.2.3.2 奈米碳管充放電行為---------------------------------------------------39 3.2.3.3 二氧化銥充放電行為---------------------------------------------------40 3.2.3.4 二氧化銥濺渡於奈米碳管充放電行為-------------------------------------41 3.3 整理與歸納---------------------------------------------------------------43 第四章 結論------------------------------------------------------------------47 參考文獻---------------------------------------------------------------------48 簡歷-------------------------------------------------------------------------52 論文發表---------------------------------------------------------------------53

[1] R. Kotz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochim. Acta, vol. 45, pp. 2483-2498, 2000.
[2] A. Burke, “Ultracapacitors: why, how, and where is the technology,” J. Power Sources, vol. 91, pp. 37-50, 2000.
[3] B. E. Conway, “Transition from ''Supercapacitor'' to ''Battery'' behavior in electrochemical energy storage,” J. Electrochem. Soc., vol. 138, pp. 1539-1548, 1991.
[4] B. Fang and L. Binder, “Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor,” Electrochim. Acta, vol. 52, pp. 6916-6924, 2007.
[5] G. Wang, Z. Shao, and Z. Yu, “Comparisons of different carbon conductive additives on the electrochemical performance of activated carbon,” Nanotechnology, vol. 18, pp. 1-6, 2007.
[6] C. Portet, G. Yushin, and Y. Gogotsia, “Effect of carbon particle size on electrochemical performance of EDLC,” J. Electrochem. Soc., vol. 155, pp. A531-A536, 2008.
[7] A. J. Bard and L. R. Faulkner, “Electrochemical methods, fundamentals and applications,” John Wiley & Sons, Singapore, 1980.
[8] D. Pletcher, “A first course in electrode processes,” J. Electroanal. Chem., vol. 315, pp. 319-322, 1991.
[9] G. P. Pandey, Y. Kumar, and S. A. Hashmi, “Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: A comparative study with lithium and magnesium systems,” Solid State Ionics, vol. 190, pp. 93-98, 2001.
[10] C. K. Subramanian, C. S. Ramya, and K. Ramya, “Performance of EDLCs using Nafion and Nafion composites as electrolyte,” J. Appl. Electrochem., vol. 41, pp. 197-206, 2001.
[11] X. Liu and T. Osake, “Properties of electric double-layer capacitors with various polymer gel electrolytes,” J. Electrochem. Soc., vol. 144, pp. 3066-3071, 1997.
[12] R. Shah, X. Zhang, and S. Talapatra, “Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals,” Nanotechnology, vol. 20, pp. 1-5, 2009.
[13] J. N. Broughton and M. J. Brett, “Investigation of thin sputtered Mn films for electrochemical capacitors,” Electrochim. Acta, vol. 49, pp. 4439-4446, 2004.
[14] W. C. Fang, K. H. Chen, and L. C. Chen, “Superior capacitive property of RuO2 nanoparticles on carbon nanotubes incorporated with nitrogen,” Nanotechnology, vol. 18, pp. 1-4, 2007.
[15] H. Liang, F. Chen, R. Li, L. Wang, and Z. Deng, “Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors,” Electrochim. Acta, vol. 49, pp. 3463-3467, 2004.
[16] 胡啟章編著, 電化學原理與方法, 五南P4.
[17] 田福助編著, 電化學理論與應用, 先科技P1.
[18] M. Mastragostino, C. Arbizzani, and F. Soavi, “Polymer-based supercapacitors,” J. Power Sources, vol. 97-98, pp. 812-815, 2001.
[19] P. B. Karandikar and Dr. D. B. Talange, “Material based characterization of aqueous metal oxide based supercapacitors,” IEEE International Conference on Power and Energy, vol. 29, pp. 485-488, 2010.
[20] Y. S. Lin, K. Y. Lee, K. Y. Chen, and Y. S. Huang, “Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes,” Appl. Surf. Sci., vol. 256, pp. 1042-1045, 2009.
[21] B. Pillay and J. Newman, “The influence of side reactions on the performance of electrochemical double-layer capacitors,” J. Electrochem. Soc., vol. 143, pp. 1806-1814, 1996.
[22] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
[23] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett., vol. 243, pp. 49-54, 1995.
[24] D. S. Bethune, C. H. Klang, M. S. DE Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, pp. 605-607, 1993.
[25] Y. Li, J. Liu, Y. Wang, and Z. L. Wang, “Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes,” Chem. Mater., vol. 13, pp. 1008-1014, 2001.
[26] W. D. Ryden and A. W. Lawson, “Electronic transport properties of IrO2 and RuO2,” Phys. Rev. B, vol. 1, p. 1494, 1970.
[27] L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2,” Phys. Rev. B, vol. 13, pp. 2433-2451, 1976.
[28] A. Osaka, T. Takatsuna, and Y. Miura, “Iridium oxide films via sol-gel processing,” J. Non-Cryst. Solids, vol. 178, pp. 313-319, 1994.
[29] N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, “Structural and analytical characterization of an iridium oxide thin layer,” Thin Solid Films, vol. 235, pp. 35-42, 1993..
[30] T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenaka, “Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells,” J. Electrochem. Soc., vol. 147, pp. 2018-2022, 2000.
[31] J. H. Xu, T. Jarlborg, and A. J. Freeman, “Self-consistent band structure of the rutile dioxides NbO2, RuO2 and IrO2,” Phys. Rev. B, vol. 40, pp. 7939-7947, 1989.

無法下載圖示 全文公開日期 2016/06/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE