簡易檢索 / 詳目顯示

研究生: 陳冠宇
Kuan-Yu Chen
論文名稱: 薄膜複合壓電圓板開發近場聲學元件之理論解析、數值計算與實驗量測
Theoretical Analysis, Numerical Calculation and Experimental Measurement on Membrane Composite Piezoelectric Circular Plate Development Near-Field Acoustic Components
指導教授: 劉孟昆
Meng-Kun Liu
黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
黃育熙
Yu-Hsi Huang
劉孟昆
Meng-Kun Liou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 272
中文關鍵詞: 薄板理論壓電陶瓷圓盤壓電陶瓷圓環薄膜聲學元件振動聲壓聲固耦合分析共振頻率
外文關鍵詞: acoustic-structure interaction
相關次數: 點閱:361下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究透過理論分析及有限元素數值計算,探討壓電陶瓷圓盤及圓環在單層、雙層並聯型於不同邊界條件下的面外振動特性,以及具有特定張力大小的圓形、環形薄膜於軸向無阻尼自由振動下的特性,接著以理論分析探討並聯型雙層壓電陶瓷圓盤複合環形薄膜結構於不同邊界條件對振動與聲學模型的適用性。使用全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI)、雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)及阻抗分析儀三種實驗技術量測自行切割並黏合之雙層壓電陶瓷的振動特性,並與理論解析、有限元素數值計算進行比較,而針對圓形振膜將使用 ESPI、LDV 進行量測,並透過具阻尼的圓形薄膜之振動理論預估實際薄膜所附有的張力大小。
利用前述的分析方法,本研究設計並聯型雙層壓電陶瓷圓盤複合環形薄膜之近場聲學元件(DA)和並聯型雙層壓電陶瓷圓環複合圓形薄膜之近場聲學元件(AC),比較兩者的振動特性與聲學響應兩者之間的關係,使用四項測量方法,包括 ESPI、LDV、阻抗分析儀和聲學測量(acoustic measurement, AM),以及有限元素法所建立聲場模擬計算之方法。針對兩款薄膜複合壓電圓板之近場聲學元件(DA)、(AC)於不同電極連接型式下,以實驗測量方法(ESPI、LDV、Impedance)探討結構振動之特性,另外透過有限元素法於聲場計算與實際聲學測量(AM)的結果進行比較,以佐證有限元素法應用於聲場的計算結果,最後以 ESPI 與 AM 之實驗結果分析其振動和聲學響應之間的關係。本研究綜合理論解析、數值分析與實驗量測,以薄膜複合壓電圓板與圓環設計近場聲學元件的研究方法,可應用於新型揚聲器最佳化聲場增益特性之聲音品質的開發。


This thesis used the theoretical analysis and finite element method(FEM) to investigate the out-of-plane vibration characteristics of piezoelectric ceramic circular and annular plates, which include one-layered piezoelectric disk and two-layered piezoelectric plates under different boundary conditions. As well as, the circular and annular membranes with specific tension are studied on the characteristics of axial undamped free vibration. Then, applied on the several boundary conditions to solve the theoretical solution for the structure of the two-layered piezoelectric ceramic disc compounded with annular membrane. In this study, three experimental techniques are used, including AF-ESPI, LDV, and impedance analyzer, to obtain the vibration characteristics of two-layered piezoelectric ceramics plates. The circular diaphragm is measured using ESPI and LDV, and the membrane theory with damped is used to estimate the tension of the actual membrane. The experimental results are compared and shown good agreement with the FEM and theoretical solutions.
This study investigates also on the vibration characteristics and acoustic response of near-field acoustic components, as well as employed four evaluation methods. The experimental techniques, included on AF-ESPI, LDV, impedance analyzer and acoustic measurement (AM), were employed form 20 Hz to 20 kHz. The experimental measurements are used to obtain the vibration characteristics of near-field acoustic components, which are connected by series and parallel electrically connections. In addition, the sound field calculation in FEM is compared with acoustic measurement (AM) to verify the results in sound pressure level. Finally, the relationship between vibration and acoustic response is discussed by the experimental results of ESPI and AM. This study uses theoretical analysis, finite element numerical calculation and experimental measurements to design near-field acoustic components. This research can be applied to the development in the optimization of sound quality for the novel loudspeaker.

中文摘要 ................................................................................................................... I Abstract ................................................................................................................... III 誌謝 .......................................................................................................................... V 目錄 ........................................................................................................................ VI 圖目錄 ................................................................................................................... XII 表目錄 ............................................................................................................... XVIII 第一章 緒論............................................................................................................. 1 1.1 研究動機 ..................................................................................................... 1 1.2 文獻回顧 ..................................................................................................... 2 1.3 論文內容簡介 ............................................................................................. 8 第二章 實驗原理、架設與聲學耦合與壓電基本理論 .......................................... 11 2.1 電子斑點干涉術 ........................................................................................ 11 2.1.1 面外振動量測 ................................................................................. 13 2.2 雷射都卜勒振動儀 ................................................................................... 21 2.3 阻抗分析儀 ............................................................................................... 24 2.4 奈米壓痕機械性質分析儀 ........................................................................ 28 2.5 聲學測量(AM) .......................................................................................... 32 2.6 聲學耦合轉換 ........................................................................................... 34 2.7 壓電基本理論 ........................................................................................... 36 第三章 元件設計與製作程序 ................................................................................ 40 3.1 元件的製作方式 ....................................................................................... 40 3.1.1 振膜的繃膜製程 ............................................................................. 40 3.1.2 壓電陶瓷的切割、黏合方法.......................................................... 43 3.2 薄膜的材料常數及量測方法 .................................................................... 46 3.2.1 薄膜材料常數的量測方法 ............................................................. 46 3.2.2 薄膜的材料常數 ............................................................................. 48 3.3 近場聲學元件的設計 ................................................................................ 51 3.3.1 並聯型雙層壓電陶瓷圓盤複合環形薄膜之近場聲學元件 ........... 51 3.3.2 並聯型雙層壓電陶瓷圓環複合圓形薄膜之近場聲學元件 ........... 54 第四章 壓電陶瓷圓盤及圓環振動特性分析與實驗量測 ..................................... 58 4.1 壓電陶瓷振動分析理論推導 .................................................................... 58 4.2 單層壓電陶瓷振動特性理論分析 ............................................................ 62 4.2.1 簡介 ................................................................................................ 62 4.2.2 單層壓電陶瓷應力、電場與位移關係 .......................................... 63 4.2.3 單層壓電陶瓷圓盤軸向振動特性理論分析 .................................. 65 4.2.4 單層壓電陶瓷圓環軸向振動特性理論分析 .................................. 70 4.3 單層壓電陶瓷圓盤及圓環於軸向振動特性理論解析、數值分析與實驗量 測之比較 ......................................................................................................... 75 4.3.1 簡介 ................................................................................................ 75 4.3.2 試片規格及 FEM 數值分析設定介紹 ............................................ 76 4.3.3 單層壓電陶瓷圓盤及圓環軸向振動理論解析與數值分析之比較 77 4.3.4 單層壓電陶瓷圓盤於自由邊界之軸向振動理論解析、數值分析與 實驗量測之比較 ..................................................................................... 78 4.4 雙層壓電陶瓷振動特性理論分析 ............................................................ 95 4.4.1 簡介 ................................................................................................ 95 4.4.2 雙層壓電陶瓷應力、電場與位移關係 .......................................... 96 4.4.3 並聯型雙層壓電陶瓷圓盤軸向振動特性理論分析 ....................... 99 4.4.4 並聯型雙層壓電陶瓷圓環軸向振動特性理論分析 ......................105 4.5 並聯型雙層壓電陶瓷圓盤及圓環於軸向振動特性理論解析、數值分析與 實驗量測之比較 ............................................................................................ 111 4.5.1 簡介 ............................................................................................... 111 4.5.2 試片規格及 FEM 數值分析設定介紹 ............................................. 111 4.5.3 並聯型雙層壓電陶瓷圓盤及圓環軸向振動理論解析與數值分析之 比較 ........................................................................................................ 112 4.5.4 並聯型雙層壓電陶瓷圓盤以(串聯、並聯)電極連接方式於軸向振 動實驗量測與理論解析之比較 ............................................................. 113 4.5.5 並聯型雙層壓電陶瓷圓環以(串聯、並聯)電極連接方式於軸向振 動實驗量測與理論解析之比較 ............................................................. 116 第五章 圓形及環形薄膜振動特性分析與實驗量測 ............................................147 5.1 薄膜於無阻尼之自由振動理論分析........................................................147 5.1.1 簡介 ...............................................................................................147 5.1.2 圓形薄膜的統御方程式(governing equation) ................................148 5.1.3 圓形、環形薄膜於無阻尼之自由振動理論分析 ..........................151 5.2 FEM 數值分析方法 ................................................................................154 5.3 圓形及環形薄膜於無阻尼之自由振動理論解析與數值分析之比較......157 5.3.1 試片規格及 FEM 數值分析設定介紹 ...........................................157 5.3.2 圓形及環形薄膜於軸向無阻尼之自由振動理論解析與數值分析之 比較 ........................................................................................................158 5.4 薄膜具阻尼之振動理論分析 ...................................................................169 5.4.1 簡介 ...............................................................................................169 5.4.2 圓形薄膜具阻尼之振動理論分析 .................................................169 5.4.3 阻抗類比分析 ................................................................................170 5.5 圓形薄膜具阻尼之振動理論解析與實驗量測之比較 .............................173 5.5.1 簡介 ...............................................................................................173 5.5.2 試片規格及實驗架設方式與方法 .................................................173 5.5.3 圓形薄膜實驗量測及探討 ............................................................173 第六章 並聯型雙層壓電陶瓷圓盤複合環形薄膜之結構振動特性 .....................182 6.1 各種邊界連接型式的介紹及其特徵方程式 ............................................182 6.1.1 Model (A)的邊界假設 ...............................................................184 6.1.2 Model (B)的邊界假設 ................................................................186 6.1.3 Model (C)的邊界假設 ................................................................188 6.1.4 Model (D)的邊界假設 ...............................................................190 6.1.5 Model (E)的邊界假設 ................................................................192 6.1.6 壓電圓盤假設為剛體邊界 ............................................................193 6.2 並聯型雙層壓電陶瓷圓盤複合環形薄膜結構之振動特性理論解析與數值 分析之比較 ....................................................................................................195 6.2.1 試片規格及 FEM 數值分析設定介紹 ...........................................195 6.2.2 並聯型雙層壓電陶瓷圓盤複合環形薄膜結構於軸向振動特性理論 解析與數值分析之比較 .........................................................................196 第七章 壓電近場聲學元件分析結果與討論........................................................209 7.1 FEM 數值分析方法 .................................................................................209 7.2 並聯型雙層壓電圓環複合圓形薄膜以數值分析預估不同尺寸效應下的聲 學響應特性 ....................................................................................................212 7.2.1 簡介 ...............................................................................................212 7.2.2 試片規格及 FEM 數值分析設定介紹 ...........................................212 7.2.3 並聯型雙層壓電圓環複合圓形薄膜以數值分析預估不同尺寸效 應下的聲學響應之比較 .........................................................................214 7.3 並聯型雙層壓電圓盤於(串聯)電極連接型式附合環形薄膜之近場聲學元 件(DA)於數值分析與實驗量測之比較 .........................................................216 7.3.1 簡介 ...............................................................................................216 7.3.2 試片規格及 FEM 數值分析設定介紹 ...........................................216 7.3.3 實驗結果比較-結構振動 ...............................................................217 7.3.4 FEM 模擬聲場計算與實際聲學測量(AM)的結果比較 ................218 7.3.5 ESPI 與 AM 之實驗結果比較 .......................................................219 7.4 並聯型雙層壓電圓盤於(並聯)電極連接型式附合環形薄膜之近場聲學元 件(DA)於數值分析與實驗量測之比較 .........................................................228 7.4.1 試片規格及 FEM 數值分析設定介紹 ...........................................228 7.4.2 實驗結果比較-結構振動 ...............................................................228 7.4.3 FEM 模擬聲場計算與實際聲學測量(AM)的結果比較 ................229 7.4.4 ESPI 與 AM 之實驗結果比較 .......................................................230 7.5 並聯型雙層壓電圓環於(串聯)電極連接型式附合圓形薄膜之近場聲學元 件(AC)於數值分析與實驗量測之比較 .........................................................239 7.5.1 試片規格及 FEM 數值分析設定介紹 ...........................................239 7.5.2 實驗結果比較-結構振動 ...............................................................240 7.5.3 FEM 模擬聲場計算與實際聲學測量(AM)的結果比較 ................241 7.5.4 ESPI 與 AM 之實驗結果比較 .......................................................241 7.6 並聯型雙層壓電圓環於(並聯)電極連接型式附合圓形薄膜之近場聲學元 件(AC)於數值分析與實驗量測之比較 .........................................................250 7.6.1 試片規格及 FEM 數值分析設定介紹 .........................................250 7.6.2 實驗結果比較-結構振動 ...............................................................250 7.6.3 FEM 模擬聲場計算與實際聲學測量(AM)的結果比較 ................251 7.6.4 ESPI 與 AM 之實驗結果比較 .......................................................252 7.7 近場聲學元件(AC)和(DA)測量結果比較 ...............................................262 第八章 結論與未來展望 ......................................................................................264 8.1 結論..........................................................................................................264 8.2 未來展望 ..................................................................................................267 參考文獻 ...............................................................................................................268

[1] Kim, Yun, Kim, Lee and Kim, “Piezoelectric electro-active paper (EAPap)
speaker,” Journal of Mechanical Science and Technology, 25(11), pp. 2763-2768,
2011.
[2] P. M. Morse, Vibration and Sound, 2nd ed., New York, USA: McGraw-Hill, pp.
172-216, 1948.
[3] Curie J., and Curie P., “Development by Pressure of Polar Electricity in
Hemihedral Crystals with Inclined Faces,” Bull. Soc. Min de France, 3, pp.
90-102, 1880.
[4] Tiersten, H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
[5] R. D. Mindlin, “High frequency vibrations of piezoelectric crystal
plates,”International Journal of Solids and Structures, 8(7), pp. 895-906, 1972.
[6] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and
Frequency Control Society, ANSI/IEEE Std 176-1987.
[7] Maugin, G.A. and Attou, D., “An asymptotic theory of thin piezoelectric
plates,”The Quarterly Journal of Mechanics and Applied Mathematics, 43(3), pp.
347-362, 1989.
[8] Rogacheva, N.N., The theory of piezoelectric shells and plates. CRC Press, USA,
1994.
[9] Gorman D.J., Vibration analysis of plates by the superposition method. World
Scientific, 1999.
[10] Karlash V.L., “Planar electroelastic vibrations of piezoceramic rectangular plate
and half-disk,” International Applied Mechanics, 43(5), pp. 547-553, 2007.
[11] 吳亦莊,馬劍清,理論解析與實驗量測壓電平板的面外振動及特性探討,國
立台灣大學機械工程研究所碩士論文,98 年 7 月。
[12] Chang, S. H., Du, B. C. and Lin, J. F., “Electro-Elastic Modeling of Annular
Piezoceramic Actuating Disk Transducers,” Journal of Intelligent Materials
Systems and Structures, 10(5), pp. 410-421, 2000.
[13] 林育志,馬劍清,壓電元件於不同介質中的動態特性研究與實驗量測,國立
台灣大學機械工程研究所博士論文,93 年 6 月。
[14] 何祥瑋,馬劍清,壓電圓盤與壓電圓環共振特性的理論分析與實驗量測,國
立台灣大學機械工程研究所碩士論文,94 年 6 月。
[15] Huang, C. H., “Free Vibration Analysis of the Piezoceramic Bimorph with
Theoretical and Experimental Investigation,” IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, 52(8), pp. 1393-1403, 2005.
[16] 黃育熙,馬劍清,壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗
量測、數值計算、與理論分析,國立台灣大學機械工程研究所博士論文,98
年 10 月。
[17] 許松逸,黃育熙,多層壓電圓盤及圓環複合等向性材料三維振動特性之理論
解析、數值分析與實驗量測,國立台灣科技大學機械工程研究所碩士論文,
106 年 12 月。
[18] P. A. A. Laura, C. A. Rossit and S. La Malfa, “Transverse vibrations of
composite, circular annular membranes: exact solution,” Journal of Sound and
Vibration, 216(1), pp. 190-193, 1998.
[19] M. Jabareen and M. Eisenberger, “Free vibrations of non-homogeneous circular
and annular membranes,” J. Sound and Vibration, vol. 240, no. 3, pp. 409-429,
Feb. 2001.
[20] Rao SS. Vibration of continuous systems. New Jersey: Wiley; 2007.
[21] J. H. Streng, “Calculation of the surface pressure on a vibrating circular stretched
membrane in free space,” J. Acoust. Soc. Am., vol. 82, no. 2, pp. 679-686, Aug.
1987.
[22] T. Mellow and L. Kärkkäinen, “On the sound field of a circular membrane in
free space and an infinite baffle,” J. Acoust. Soc. Am., vol. 120, no. 5, pp.
2460-2477, Nov. 2006.
[23] Y. H. Huang and H. Y. Chiang, “Vibrational mode and sound radiation of
electrostatic speakers using circular and annular diaphragms,” J. Sound and
Vibration, vol. 371, pp. 210-226, Jun. 2016.
[24] Leith, E. N. and Upatnieks, J., “Reconstructed Wavefronts and Communication
Theory,” Journal of the Optical Society of America, 52(10), pp. 1123-1130, 1962.
[25] Butters, J.N. and Leendertz, J.A., “Speckle pattern and holographic techniques in
engineering metrology,” Optics and Laser Technology, 3(1), pp. 26-30, 1971.
[26] Lkberg O. J. and Hgmoen K., “Use of modulated reference wave in electronic
speckle pattern interferometry,” Journal of Physics, 9(E), pp. 847-851, 1976.
[27] Wykes C., “Use of electronic speckle pattern interferometry (ESPI) in the
measurement of static and dynamic surface displacements,” Optical Engineering,
21, pp. 400-406, 1982.
[28] Malmo, J. T., Lkberg O. J. and Slettemoen, G. A., “Interferometric testing at
very high temperatures by TV holography,” Experimental Mechanics, 28(3), pp.
315-321, 1988.
[29] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the
time-averaged electronic speckle pattern interferometry methods,” Applied
Optics, 35(22), pp. 4502-4509, 1996.
[30] 黃吉宏,馬劍清,應用電子斑點干涉術探討三維壓電材料體及含裂紋板的振
動問題,國立台灣大學機械工程研究所博士論文,87 年 6 月。
[31] 謝東明,馬劍清,應用電子斑點光學干涉術探討含缺陷平板之振動特性,國
立台灣大學機械工程研究所碩士論文,1999 年 6 月。
[32] 林憲陽,壓電陶瓷複合層板動態特性之數值分析與實驗量測,國立台灣大學機械工程研究所博士論文,91 年 6 月。
[33] 黃育熙,馬劍清,壓電石英晶體之平板結構的動態特性研究,國立台灣大學
機械工程研究所碩士論文,92 年 6 月。
[34] Cady W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
[35] Mason W.P., Piezoelectric crystals and their application to ultrasonics. New
York: Van Nostrand, 1950.
[36] Ma C. C., Lin H. Y., Lin Y. C. and Huang Y. H., “Experimental and numerical
investigations on resonant characteristics of a single-layer piezoceramic plate
and a cross-ply piezolaminated composite plate,” Journal of the Acoustical
Society of America, 199(3), pp. 1476-1486, 2006.
[37] C. Y. Wang, “Vibration of an annular membrane attached to a free, rigid core,”
Journal of Sound and Vibration, 260, pp. 776-782, 2003.
[38] Fabrizio Pinto, “Analytical and experimental investigation on a vibrating annular
membrane attached to a central free, rigid core,” Journal of Sound and Vibration,
291, pp. 1278-1287, 2006.
[39] P. Lotton, M. Bruneau, Z. Skvor, A.-M. Bruneau, “A model to describe the
behaviour of a laterally radiating piezoelectric loudspeaker,” Applied Acoustics,
58, pp. 419-442, 1999.
[40] H. J. Kim, W. S. Yang, and K. No, “Effect of an elastic mass on frequency
response characteristics of an ultra-thin piezoelectric micro-acoustic actuator,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 8, pp. 1587-1594,
Aug. 2013.
[41] 林揚中,莊沅隴,黃育熙,雙層壓電圓盤複合薄膜研製近場聲學元件之耦合
聲場的理論數值與實驗研究,國立台灣科技大學機械工程實務專題報告,105
年 1 月。
[42] 江信遠,黃育熙,靜電和壓電揚聲器之圓形振膜振動與聲壓研究,國立台灣科技大學機械工程研究所博士論文,106 年 7 月。
[43] Zhou Y.S. and Tiersten H.F., “On the normal acceleration sensitivity of contoured
quartz resonators with the mode shape displaced with respect to rectangular
supports,” Journal of Applied Physics, 69(5), pp. 2862-2870, 1991.
[44] Royer D., Dieulesaint E. and LyleElastic S.N., Waves in Solids: Generation,
acousto-optic interaction, applications, Springer, 2000.
[45] Andrushchenko V.A., Vovkodav I.F., Karlash V.L. and Ulitko A.F., “Coefficient
of electromechanical coupling in piezoceramic disks,” International Applied
Mechanics, 11(4), pp. 377-382, 1975.
[46] G. M. Pharr, W.C. Oliver and F.R. Brotzen, “On the generality of the relationship
among contact stiffness, contact area, and elastic modulus during indentation,” J.
Mater .Res., Vol. 7, No. 3, pp. 613-617, 1992.
[47] 白明憲,工程聲學,第五版,新北市,台灣:全華圖書,2012,第五章。
[48] A.D. Pierce, Acoustic: an Introduction to its physical principles and Applications,
New York, USA: McGraw-Hill, 1981, pp. 208-249.
[49] W. M. Leach, Introduction to Electroacoustics and Audio Amplifier Design, 4th
ed., IA, USA: Kendall Hunt, 2010, pp.1-155.
[50] W.C. Oliver and G. M. Pharr, “An improved technique for determining hardness
and elastic modulus using load and displacement sensing indentation
experiments,” J. Mater .Res., Vol. 7, pp. 1564-1583, 1992.

QR CODE