簡易檢索 / 詳目顯示

研究生: 郭啟全
Chil-chyuan Kuo
論文名稱: 準分子雷射退火薄膜再結晶特性之線上光學檢測系統研發與再結晶機制研究
Development of In-Situ Time-Resolved Optical Inspection System for Thin Films Fabricated by Excimer Laser Annealing and Investigation on Recrystallization Mechanism
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 葉文昌
Wenchang Yeh
李世光
Chih-Kung Lee
范光照
Kuang-Chao Fan
吳忠幟
Chung- chih Wu
趙崇禮
Choung-lii Chao
雷添壽
Tien-Shou Lei
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 234
中文關鍵詞: 準分子雷射退火矽膜線上光學檢測系統再結晶機制
外文關鍵詞: Excimer Laser Annealing, a-Si, In-Situ Time-Resolved Optical Inspection System, Recrystallization Mechanism
相關次數: 點閱:510下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文建構一套能夠即時量測薄膜於準分子雷射照射期間之反射率與穿透率變化之原位(in-situ)線上光學檢測系統(Time-Resolved Optical Reflectivity and Transmissivity,TRORT),本量測系統包含He-Ne雷射、高速光檢測器以及高速數位示波器。由於矽膜於熔化至結晶之變化,對於He-Ne雷射之反射與穿透率之特性均不同,因此可運用於PECVD與Sputtering製程所製作之矽膜之再結晶特性研究,並配合金相顯微鏡、場效發射掃描式電子顯微鏡、微拉曼光譜儀、原子力顯微鏡與高解析度穿透式電子顯微鏡之材料微結構觀察與分析,進而提出再矽膜結晶機制。實驗結果顯示,本研究所建構之薄膜線上光學檢測系統,確實可以於準分子雷射退火(Excimer Laser Annealing, ELA)期間,線上即時檢測薄膜再結晶特性變化,即可以得知薄膜產生熔化、成核、凝固以及轉變成多晶等相變化過程。當a-Si厚度均勻度控制在小於± 5 %下、準分子雷射之脈衝能量變異量標準差小於2 %以及準分子雷射光束能量分布均勻性小於2.5 %,運用線上光學檢測系統所檢測之矽膜熔化時間,可以直接推測出多晶矽之晶粒尺寸。穿透式電子顯微鏡結果顯示背面照射準分子雷射退火(Backside ELA)與正面照射準分子雷射退火(Frontside ELA)於超級橫向長結晶之機制是一樣,因此如以量產低溫多晶矽薄膜電晶體(Low temperature polycrystalline silicon thin film transistors, LTPS TFTs)製程觀點來分析,本研究發現Backside ELA優於Frontside ELA,原因為雷射利用效能高以及運用光吸收膜進行LTPS TFTs元件製作製程簡便。藉由改變a-Si厚度與試片預熱溫度來提昇多晶矽膜之晶粒尺寸,提昇倍率有限,因此唯有運用晶粒定位技術與試片結構中搭配光吸收膜才可製作出大晶粒並實現單晶矽薄膜電晶體製作。


    An in-situ real-time time-resolved optical reflectivity and transmissivity (TRORT) inspection system combining two He-Ne probe lasers, three photodiodes and a fast digital oscilloscope was developed to investigate the recrystallization mechanism of silicon thin films fabricated by excimer laser annealing (ELA) in this study. The significant change for the reflectivity and transmissivity of thin films in the liquid and crystalline phase during ELA is the principal theory of the TRORT inspection system. The laser-annealed microstructures were investigated by optical microscopy, field-emission scanning electron microscopy, micro-Raman spectroscopy, atomic force microscopy and high-resolution transmission electron microscopy (TEM) to shed light on the recrystallization mechanism of silicon thin films. TRORT measurements revealed that the entire phase transformation processes: melting, nucleation, resolidification, and crystalline phase can be observed during ELA. The grain size of polycrystalline silicon (poly-Si) can be directly estimated from the melt duration of liquid Si under thickness uniformity of precursor a-Si thin films below ±5 %, pulse-to-pulse variation in excimer laser beam energy below 2 % (standard deviation), and beam homogeneity below 2.5 %. Detailed TEM analyses showed that the recrystallization mechanism in the super lateral growth for frontside ELA and backside ELA are the same. From the viewpoint of mass production of low temperature polycrystalline silicon thin films transistor (LTPS TFTs) using light-absorptive film with suitable absorption coefficient, the backside ELA seems to be an appropriate approach due to higher excimer laser efficiency and the reduction of processing time. In order to realize the fabrication of single-crystal Si TFTs on a large-area glass substrate, the approach combining both location control technique of Si crystal grains and sample containing light-absorptive films with an appropriate absorption coefficient is required, while the enlargement of grain size of poly-Si is limited by the method of increasing the thickness of a-Si or substrate heating.

    目 錄 中文摘要....................................................................................................I 英文摘要...................................................................................................II 誌謝..........................................................................................................III 目錄.........................................................................................................IV 圖索引.......................................................................................................................VII 表索引.....................................................................................................................ⅩIII 第一章 緒論...........................................................................................1 1.1 前言................................................................................................1 1.2 研究動機與目的...............................................................................4 1.3 論文架構...............................................................................5 第二章 文獻回顧..................................................................................8 2.1 準分子雷射原理、特性與退火過程之熱傳機制……………………....9 2.2 多晶矽製作技術………….......................................................16 2.2.1準分子雷射結晶技術………….............................................17 2.2.2金屬誘發結晶技術.................................................................24 2.2.3 連續雷射結晶技術............................................................26 2.2.4固相結晶技術..................................................................28 2.2.5 直接沉積多晶矽技術............................................................29 2.3 線上光學檢測技術..........................................................................30 2.3.1時間解析表面反射率檢測技術................................................30 2.3.2時間解析表面與背面反射率檢測技術......................................31 2.3.3 時間解析反射率與穿透率檢測技術........................................33 2.3.4不同波長檢測光源之線上光學檢測技術………......................34 2.4 預熱溫度對於矽膜再結晶特性之影響...............................................35 2.5矽膜厚度對於矽膜再結晶特性之影響...............................................37 2.6 運用TEM分析多晶矽膜再結晶機制.................................................40 2.7 鍺膜再結晶特性研究......................................................................43 第三章 實驗規劃與方法……………………………................45 3.1試片準備................................................................................48 3.1.1 玻璃基板清洗流程................................................................49 3.1.2 運用PECVD沉積a-Si............................................................50 3.1.3 運用PECVD沉積SiO2..........................................................51 3.1.4 運用Sputtering沉積a-Si……….............................................52 3.1.5 試片脫氫處理.......................................................................53 3.1.6 試片預熱設備.......................................................................55 3.2準分子雷射退火系統........................................................................56 3.3 矽膜再結晶性之線上光學檢測系統建構..................................................63 3.4多晶薄膜微結構分析設備........................................................................71 3.4.1場發射掃描式電子顯微鏡...................................................72 3.4.2 微拉曼光譜儀.......................................................................73 3.4.3原子力顯微鏡....................................................................75 3.4.4 穿透式電子顯微鏡................................................................75 第四章 線上光學檢測系統研究與分析.................................78 4.1 前言................................................................................78 4.2實驗結果與討論................................................................78 4.2.1光學檢測系統之重複性分析....................................................78 4.2.2檢測波形分析....................................................................82 4.2.3不同光圈尺寸與熔化時間關係之研究與分析..........................86 4.2.4不同檢測光源角度之研究與分析............................................89 4.3結論...............................................................................95 第五章PECVD矽膜再結晶特性研究與分析……….…....97 5.1 前言................................................................................97 5.2實驗結果與討論................................................................97 5.2.1多晶矽膜再結晶特性分析........................................................97 5.2.2多晶矽膜微拉曼光譜分析.....................................................121 5.3結論...............................................................................130 第六章 預熱溫度對於矽膜再結晶特性研究與分析……….132 6.1 前言................................................................................132 6.2矽膜暫態溫度變化分析................................................................134 6.3實驗結果與討論......................................................................136 6.3.1矽膜熱反應時間分析..............................................................136 6.3.2準分子雷射能量分析..............................................................139 6.3.3矽膜熔化時間分析..................................................................142 6.3.4多晶矽晶粒尺寸分析.................................................................145 6.3.5多晶矽結晶品質分析......................................................................150 6.3.6多晶矽表面粗糙度分析..................................................................152 6.4結論.........................................................................................................155 第七章 矽膜厚度對於矽膜再結晶特性研究與分析…..….158 7.1 前言................................................................................158 7.2實驗結果與討論................................................................158 7.2.1矽膜熱反應時間分析............................................................159 7.2.2準分子雷射能量密度分析....................................................160 7.2.3 五種矽膜厚度矽膜熔化時間分析..........................................165 7.2.4 五種矽膜厚度晶粒尺寸分析.................................................171 7.2.5多晶矽結晶品質分析............................................................175 7.3結論...............................................................................176 第八章 正背面準分子雷射退火矽膜再結晶機制研究…….178 8.1 前言................................................................................178 8.2實驗結果與討論................................................................179 8.2.1線上光學檢測結果與分析......................................................179 8.2.2矽膜平面再結晶結果與分析..............................................187 8.2.3 矽膜橫截面再結晶結果與分析….........................................194 8.2.4 矽膜再結晶機制研究與分析...............................................204 8.3結論..........................................................................................215 第九章 結論與未來研究方向................................................218 9.1 結論...........................................................................................218 9.2未來研究方向..............................................................................221 參考文獻.............................................................................................225 作者簡介..............................................................................................234 圖索引 圖2.1準分子雷射能級示意圖….……………………………….……………….…11 圖2.2不同熱源之退火時間……………………………..……………….…………12 圖2.3絕熱、熱通量與等溫三種不同加熱過程定義示意圖……….……..………13 圖2.4試片內不同位置與矽膜熔化情形關係圖..…………………..………..…….14 圖2.5矽膜完全熔化與部分熔化之準分子雷射能量密度分佈情形……..……......15 圖2.6 矽膜受到準分子雷射照射後之熔化與再結晶過程..................................…18 圖2.7 Im所提出之矽膜再結晶機制…………………………..……………..……20 圖2.8直徑10 µm之poly-Si………..…………………………..……………..……21 圖2.9 TCZ-900X準分子雷射退火機台………….…………..……………………22 圖2.10運用TCZ-900X準分子雷射退火機台所製作之多晶矽.….………..……23 圖2.11連續雷射結晶技術示意圖………...…………………………………..……27 圖2.12運用連續雷射結晶技術所製作出多晶矽……………………………….…27 圖2.13時間解析之矽膜表面反射率訊號…………….….……………………..…31 圖2.14 (a)表面反射率訊號、(b)背面反射率訊號以及(c)矽膜表面液態矽與底部單 晶矽之界面深度………..............................................................…33 圖2.15矽膜表面反射率訊號、穿透率訊號以及熱輻射訊號……..…………..……34 圖2.16不同檢測光源之反射率變化..…………......……………………………..…35 圖2.17矽膜平均凝固速率與熔化深度與時間關係………………..…..…..………36 圖2.18不同基板熱溫度與平均晶粒尺寸關係………………….………...…..……37 圖2.19不同基板溫度所製作出poly-Si膜SEM圖…………….…………………37 圖2.20不同矽膜厚度與矽膜產生熔化、全熔之準分子雷射能量密度關係………38 圖2.21不同矽膜厚度與多晶矽平均晶粒尺寸關係……………………….………39 圖2.22不同矽膜厚度與多晶矽平均晶粒尺寸關係…………………….……….…39 圖2.23不同矽膜厚度於不同準分子雷射能量密度照射下之表面粗糙度值變化..40 圖2.24 200 nm厚LPCVD a-Si膜之再結晶機制……….…………………………43 圖2.25液態鍺之凝固速率與準分子雷射能量密度關係圖…..……………………44 圖3.1本研究之實驗流程示意圖………..……………….…………………………46 圖3.2本研究之試片結構示意圖……………………..….…………………………48 圖3.3 AKT-1600 cluster tool PECVD機台示意圖…………………….…………50 圖3.4 運用AKT-1600 PECVD製作兩種試片之流程示意圖….………….………51 圖3.5 PECVD設備實體圖…….………………….………………………...………52 圖3.6濺鍍機實體圖……..…………..………..…..………………………....………53 圖3.7脫氫處理之溫度與時間關係圖………………………………………………54 圖3.8自耦變壓器之輸出電壓與試片溫度關係圖…………....……………………55 圖3.9運用熱電偶校正試片溫度裝置實體圖…………..…………..………………56 圖3.10準分子雷射退火系統實體圖..…………….………………..…………..…...57 圖3.11準分子雷射退火矽膜之光學系統示意圖…………...…..………………….57 圖3.12 LAMBDA PHYSIK COMPex102準分子雷射機台實體圖……………….58 圖3.13 XeF準分子雷射退火自動操控系統示意圖…………….…..…………….59 圖3.14試片裝置實體圖….…………….………………..…….…………………….60 圖3.15運用平凸透鏡得到所需之準分子雷射退火能量密度EL示意圖……...….61 圖3.16聚焦鏡位置與準分子雷射能量關係示意圖…………………….………….62 圖3.17 Frontside ELA與Backside ELA示意圖……………….……………….…...62 圖3.18矽膜再結晶性之線上光學檢測系統示意圖…….….….……..………..…...64 圖3.19不同尺寸之光圈實體圖……..……….……….………….……………..…...65 圖3.20檢測光源He-Ne雷射之檢測角度定義示意圖……………….………..…...66 圖3.21薄膜再結晶性之線上光學檢測系統實體圖.…..………...…..………..…....67 圖3.22 (a)Backside ELA與(b)Frontside ELA之檢測示意圖...….…..…..…...…...70 圖3.23 (a)運用穿透率以及(b)反射率波形進行觸發結果…...…..………………...70 圖3.24試片預熱之矽膜熔化時間量測示意圖….……..……………………….......71 圖3.25場發射掃描式電子顯微鏡實體圖………….…………………………..…...73 圖3.26 Renishaw inVia微拉曼光譜儀實體圖….…………….………………..…...74 圖3.27 Renishaw inVia微拉曼光譜儀之量測原理示意圖………………………....74 圖3.28 Dimension 3100原子力顯微鏡實體圖..………..……………………..…...75 圖3.29 JEM-2010高解析度電子顯微鏡實體圖…..…………………………..…...77 圖4.1 XeF準分子雷射脈衝輪廓圖………..…….………...…….…………………79 圖4.2矽膜溶化時間定義圖…….………………………….………..………………80 圖4.3 FST、FSR與BSR於準分子雷射能量密度200 mJ/cm2所檢測之矽膜熔化時間重複性………..………………….………………………………………..81 圖4.4觸發訊號與反射訊號和穿透訊號關係圖.…………….……….……………82 圖4.5典型FSR、FST與BSR波形………………..…………..….………………84 圖4.6 Frontside ELA與Backside ELA於不同準分子雷射能量密度與下降時間關係圖…………………………………………….……………………..…….84 圖4.7 BSR檢測位置不正確情形與結果……………………..……………………85 圖4.8 FSR、FST與BSR檢測位置均正確情形與結果………….………….……86 圖4.9不同光圈尺寸於所量測之矽膜熔化時間………………..………………….87 圖4.10矽膜產生剝落所量測之波形……….…….…………………………………88 圖4.11矽膜熔化時間與準分子雷射能量關係圖.………………….………………89 圖4.12 Frontside ELA之爆炸結晶震盪圖…………..……………..…….…………90 圖4.13不同He-Ne雷射角度之TRORT檢測結果……………..………………..…92 圖4.14 He-Ne雷射與光偵測器之角度關係示意圖……………..…………………93 圖4.15 Diode與He-Ne雷射之發散角度與光束外形輪廓示意圖….…………….94 圖4.16 Diode與He-Ne雷射之訊號圖……………..…..…………….…………….94 圖5.1 TRORT波形與準分子雷射能量密度關係圖。準分子雷射能量密度:(a)E=75 mJ/cm2.(b)E=100 mJ/cm2.(c)E=130 mJ/cm2.(d)E=150 mJ/cm2....................100 圖5.2準分子雷射能量密度150mJ/cm2所製作出多晶矽OM與SEM照片……101 圖5.3矽膜熔化時間與準分子雷射能量密度關係圖。準分子雷射能量密度:(a)E=175 mJ/cm2.(b)E=190 mJ/cm2.(c)E=200 mJ/cm2.(d)E=225 mJ/cm2....102 圖5.4 直徑約1μm之之圓盤狀晶粒…….…..…….……….………….…..………105 圖5.5 運用目視(右)、OM(中)以及SEM(左)觀察矽膜全熔情形……………….107 圖5.6自由能與溫度關係圖……...….……….………………………………….…108 圖5.7 Poly-Si之臨界半徑與過冷度關係…..……….……………………………109 圖5.8準分子雷射能量密度100-200 mJ/cm2與矽膜熔化時間關係圖.………….110 圖5.9準分子雷射能量密度100-200 mJ/cm2之反射率波形重疊圖……………111 圖5.10準分子雷射能量密度100-200 mJ/cm2之穿透率波形重疊圖………….…111 圖5.11矽膜產生剝落之OM巨觀形貌照片……..…….…………………………112 圖5.12矽膜產生剝落之SEM巨觀形貌照片…………….………………………112 圖5.13矽膜產生剝落之SEM微觀照片…………….…….………………….……113 圖5.14矽膜剝落之表面粗糙度值(RMS=39.98 nm)………..……..………………113 圖5.15不同準分子雷射能量密度與多晶矽晶粒尺寸SEM照片………..….……114 圖5.16 Poly-Si晶粒尺寸、矽膜熔化時間與準分子雷射能量密度關係圖………..116 圖5.17 (a) a-Si之表面粗糙度(RMS roughness=0.79 nm),(b)準分子雷射能量密度 190 mJ/cm2所製作多晶矽之表面粗糙度(RMS roughness=8.28 nm) …118 圖5.18 a-Si與poly-Si之拉曼光譜圖……..………….............................………121 圖5.19脫氫與未脫氫試片之拉曼光譜圖………...…………………………….…122 圖5.20矽膜從基板剝落與氫爆所產生小孔洞之SEM照片…….………………124 圖5.21 a-Si膜經過不同準分子雷射能量密度照射後之拉曼光譜結果。(a)準分子雷射能量密度與△ω關係圖;(b)準分子雷射能量密度與拉曼光譜之FWHM關係圖;(c)準分子雷射能量密度與拉曼光譜峰值強度關係圖..126 圖5.22 Poly-Si之張伸應力與壓縮應力示意圖……..………………….………..128 圖5.23定義poly-Si膜結晶比例示意圖……………….…………….………....…129 圖6.1準分子雷射觸發訊號與He-Ne雷射反射率之關係圖….……..........….…137 圖6.2 a-Si厚度50 nm於不同準分子雷射能量密度照射下之熱反應時間……138 圖6.3 a-Si厚度90 nm於不同準分子雷射能量密度照射下之熱反應時間…...…138 圖6.4 a-Si厚度50nm與90nm於不同預熱溫度下之Eth、Ec與Eab……….……141 圖6.5 a-Si厚度50nm、90nm於不同預熱溫度之準分子雷射能量密度與矽膜熔化時間關係………………….…………………………………………..…143 圖6.6 a-Si厚度50nm與90nm於不同預熱溫度之矽膜最長熔化時間.........……145 圖6.7 a-Si厚度50nm與90nm於不同預熱溫度之poly-Si晶粒尺寸……..…….146 圖6.8 a-Si厚度90nm於不同預熱溫度之準分子雷射能量密度與SLG區域之 poly-Si晶粒尺寸關係 .......................................................................................147 圖6.9a-Si厚度50nm於不同預熱溫度所製作poly-Si之SEM照片(倍率20000X) ………………….…………………………………..……………148 圖6.10 a-Si厚度50nm於不同預熱溫度所製作poly-Si之SEM照片(倍率20000X)……………………………………………………………….……149 圖6.11單晶矽之Raman光譜圖.................................................................….……151 圖6.12 a-Si之Raman光譜圖…….………………….............................….……151 圖6.13 a-Si厚度90nm於室溫下經準分子雷射能量密度550 mJ/cm2照射後之Raman光譜圖.....................................................................................……151 圖 6.14 a-Si厚度90nm於預熱溫度500℃下經準分子雷射能量密度550mJ/cm2照射後之Raman光譜圖….…………………………………….......….……151 圖 6.15 a-Si厚度90nm於不同預熱溫度條件之Raman位移與FWHM關……...151 圖6.16 a-Si厚度90nm在(a)室溫與(b)預熱溫度500℃條件下於SLG區域之表面輪廓圖………………………….………………………………153 圖6.17 a-Si厚度90nm在(a)室溫與(b)預熱溫度500℃條件下於矽膜全部熔化區域之表面輪廓圖……………………………………………………..…..…154 圖6.18 a-Si厚度50nm於SLG區域之(a)SEM與(b)AFM照片………………...…155 圖7.1 五種a-Si厚度在室溫環境下於不同準分子雷射能量密度照射下之熱反應時間……………………………………………………..…………………159 圖7.2五種a-Si厚度於不同預熱溫度之矽膜完全熔化準分子雷射能量密度變化圖…………………………………………………………………………...161 圖7.3五種a-Si厚度於不同預熱溫度之矽膜產生剝落準分子雷射能量密度變化圖…………………………………………………………………………..161 圖7.4 a-Si厚度400nm於不同預熱溫度之Eth、Ec與Eab…………………………..163 圖7.5 a-Si厚度20nm、50nm、90nm與200nm於不同預熱溫度之Eth、Ec與Eab…163 圖7.6五種a-Si厚度在不同預熱溫度之製程窗口……………….……….………164 圖7.7 a-Si厚度400nm於不同預熱溫度之矽膜熔化時間與準分子雷射能量密度關係圖................................................................................................................166 圖7.8 a-Si厚度200nm、90nm、50nm與20nm於不同預熱溫度之矽膜熔化時間與準分子雷射能量密度關係圖....................................................................167 圖7.9五種a-Si厚度於不同預熱溫度之矽膜最長熔化時間..................................168 圖7.10 a-Si厚度400nm於預熱溫度500℃所量測出最長矽膜熔化時間1714 ns.168 圖7.11五種a-Si厚度於預熱溫度500℃之最長熔化時間與準分子雷射能量密度關係圖…….……………………………...........................................................169 圖7.12 a-Si厚度400 nm於預熱溫度500℃環境下之矽膜熔化時間與準分子雷射能量關係圖.................................................................................................170 圖7.13直徑4.7μm之poly-Si....................................................................................172 圖7.14五種a-Si厚度於不同預熱溫度所製作出最大poly-Si之晶粒尺寸關係圖…………………………………..……………………………………….172 圖7.15五種a-Si厚度於預熱500 ℃所製作出最大poly-Si之晶粒尺寸………....173 圖7.16五種準分子雷射能量密度照射矽膜後之SEM照片圖…….……..….......174 圖8.1 Frontside ELA檢測波形…………………………………………………..180 圖8.2 Backside ELA檢測波形…………………………………………..…..…..182 圖8.3 Frontside ELA與Backside ELA之矽膜熔化時間與準分子雷射能量關係…………………………………………………………………….……183 圖8.4 Frontside ELA與Backside ELA之Eth、Ec與Eab………….…………….185 圖8.5矽膜經準分子雷射照射前後之OM巨觀形貌照片…………………….....188 圖8.6運用OM觀察不同準分子雷射密度於Frontside ELA矽膜之巨觀形貌照片………..….………………….………………………………….…….....189 圖8.7不同區域之多晶矽膜SEM照片………..….………………….………….....190 圖8.8典型之矽膜全部熔化SEM照片與準分子雷射能量密度關係…..…….…191 圖8.9矽膜全部熔化之不同區域晶粒成長情形…..…...………..………….……..192 圖8.10橫向爆炸結晶與矽膜凝固方向示意圖……………............…………........193 圖8.11矽膜平面再結晶結果示意圖…………..………..…………………….......193 圖8.12 Frontside ELA之矽膜受表面熔化門檻值照射後TEM照片與再結晶機制示意圖………………………………..………………………….….........195 圖8.13 Backside ELA之矽膜受表面熔化門檻值照射後TEM照片與再結晶機制示意圖………………………………………………………….……..…........195 圖8.14 Frontside ELA之斷面微觀結構TEM 明視野照片。準分子雷射能量密度由(a)至(d)遞增……….…………………………………………………......196 圖8.15 Backside ELA之斷面微觀結構TEM 明視野照片。準分子雷射能量密度由(a)至(d)遞增………………………………………………………........197 圖8.16 Frontside與backside ELA矽膜部分熔化之poly-Si成長示意圖…........198 圖8.17 Frontside ELA與Backside ELA 矽膜全部熔化之TRORT波形……....200 圖8.18 Frontside ELA與Backside ELA之矽膜全部熔化後之poly-Si凝固方向示意圖……………………………………………………..………………...201 圖8.19矽膜橫截面再結晶結果示意圖…..………………………….…….……...201 圖8.20 Frontside ELA矽膜表面熔化繞射圖形……….……..…………………...202 圖8.21 Backside ELA矽膜部分熔化繞射圖形…..……………………….……...202 圖8.22微雙晶缺陷之TEM 明視野照片..........................................………….......203 圖8.23矽膜二維再結晶機制示意圖…………..……………….…...……………..205 圖8.24 Frontside ELA之再結晶過程:(a)矽膜部分熔化、(b)矽膜近乎全部熔化與(c)矽膜全部熔化………………………………………………………..206 圖8.25 Backside ELA之再結晶過程:(a)矽膜部分熔化、(b)矽膜近乎全部熔化與(c)矽膜全部熔化……………….……………………………………..206 圖8.26 Frontside ELA之圓盤狀晶粒成長示意圖………..……….……….……..212 圖8.27 Backside ELA之圓盤狀晶粒成長示意圖…..……………….…….……..213 圖8.28 Liquid-Si/SiO2界面初始成核間距示意圖:(a)初始成核點間距小於矽膜厚度,(b)初始成核點間距大於矽膜厚度…………..………...…..….……..215 表索引 表2.1常用之準分子雷射介質與波長........................................................................11 表3.1實驗設備與其主要規格與功能........................................................................46 表3.2 矽膜、SiO2與玻璃基板相關熱性質................................................................48 表3.3不同材料之熱傳導係數....................................................................................49 表3.4玻璃基板規格....................................................................................................49 表3.5玻璃基板清洗流程............................................................................................50 表3.6運用PECVD沉積 SiO2之實驗參數................................................................52 表3.7沉積不同a-Si厚度之實驗參數........................................................................53 表3.8薄膜再結晶性之線上光學檢測系統相關設備................................................68 表4.1 FST、FSR與BSR於準分子雷射能量密度150 mJ/cm2與200 mJ/cm2所檢測之矽膜熔化時間…………………………………………………..............80 表4.2不同He-Ne雷射角度檢測準分子雷射退火非晶矽膜是否具有爆炸結晶現象之彙整表............................................................ ............ ............ ...................90 表5.1準分子雷射能量密度、矽膜熔化時間與平均晶粒尺寸關係…....................120 表8.1 四種矽膜再結晶機制之比較表.................................................................. 210 表

    參考文獻
    [1] M. W. Geis, D. C. Flanders, and Henry I. Smith, Appl. Phys. Lett. 35 (1979) 71.
    [2] J.Y. Kwon, H. Lim, K. B. Park, J. S. Jung, D. Y. Kim, H. S. Cho, S. P. Kim, Y. S. Park, J. M. Kim, and T. Noguchi, Jpn. J. Appl. Phys. 45 (2006) 4362.
    [3] S. Grego, J. Lewis, E. Vick, and D.Temple, Thin Solid Films 515 (2007) 4745.
    [4] G. Kawachi, Y. Nakazaki, H. Ogawa, M. Jyumonji, N. Akita, M. Hiramatu, K. Azuma, T. Warabisako, and M. Matsumura, Jpn. J. of Appl. Phys.46 (2007) 51.
    [5] J.F. Michaud, R. Rogel, T. M. Brhim, and M. Sarret, J. Non-Cryst. Sol. 352 (2006) 998.
    [6] J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett. 63 (1993) 1969.
    [7] S. R. Stiffler, M. O. Thompson, and P. S. Peercy, Phys. Rev. Lett. 60 (1998) 2519.
    [8] F. Vega, N. Chaoui , J. Solis, J. Armengol, and C. N. Afonso, J. Appl. Phys. 97 (2005) 103519 .
    [9] F. C. Voogt, R. Ishihara, and F. D. Tichelaar, J. Appl. Phys. 95 (2004) 2873.
    [10] W.C. Yeh and D. Y. Ke, Jpn. J. Appl. Phys. 45 (2006) L970.
    [11] J. Hercht, The Laser Guide Book, McGraw-Hill, Singapore, 1986.
    [12] R.Singh, J. Appl. Phys. 63 (1988) 59.
    [13] J. S. Im and H. J. Kim, Appl. Phys. Lett. 64 (1994) 2303.
    [14] R.F. Wood, G. A. Geist, and C. L. Liu, Phys. Rev. B 53 (1996) 15863.
    [15] H. Kuriyama, T. Nohda, S. Ishida, T. Kuwahara, S. Noguchi, S. Kiyama, S. Tsuda, and Shoichi Nakano, Jpn. J. Appl. Phys. 32 (1993) 6190.
    [16] T. Sameshima, H. Watakabe, N. Andoh, and S. Higashi, Jpn. J. Appl. Phys. 45 (2006) 2437.
    [17] M. Tsubuku, K. S. Seol, I. H. Choi, and Y. Ohki, Jpn. J. Appl. Phys. 45 (2006) 1689.
    [18] L. Mariucci, A. Pecora, G. Fortunato, C. Spinella, and C. Bongiorno, Thin Solid Films 427 (2003) 91.
    [19] D. H. Choi, E. Sadayuki, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys. 33 (1994) 70.
    [20] J.S. Im, M.A. Crowder, R.S. Sposili, J.P.Leonard, H.J. Kim, J.H. Yoon, V.V. Gupta,H.J. Song, and H.S.Cho. Phys. Sta. Sol. A 166 (1998) 603.
    [21] G. Fortunato, L. Mariucci, R. Carluccio, A. Pecora, and V. Foglietti, Appl. Surf. Sci. 154 (2000) 95.
    [22] S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Gowers, IEEE Trans. Elec. Dev. 40 (1993) 407.
    [23] M. Hiramatsu, H. Ogawa, Y. Kimura, M. Jyumonji, N. Akita, T. Katou, and M. Matsumura, Jpn. J. Appl. Phys. 45 (2006) 3922.
    [24] W. C. Yeh and Y. C. Liu, Dig. Tech. Papers AM-FPD’ 03, p.159 (2003).
    [25] D.H. Choi, K. Shimizu, O. Sugiura, and M. Matsumura, Jpn. J. Appl.Phys. 31 (1992) 4545.
    [26] A. Marmorstein, A. T. Voutsas, and R. Solanki, J. Appl. Phys. 82 (1997) 4303.
    [27] J. S. Im, R. S. Sposili, and M. A. Crowder, Appl. Phys. Lett. 70 (1997) 3434.
    [28] H. J. Kim and J. S. Im, Appl. Phys. Lett., 68 (1996) 1513.
    [29] K. Ishikaw, M. Ozawa, C.H. Oh, and M. Matsumura, Jpn. J. Appl. Phys. 37 (1998) 731.
    [30] G. Aichmayrs, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht, and H. P. Strunk, Phys. Stat. Sol. (a) 166 (1998) 659.
    [31] C.H. Oh, M. Ozawa, and M. Matsumura, Jpn. J. Appl. Phys. Vol. 37(1998) L492.
    [32] http://www.teamcymerzeiss.com/products.htm。TCZ公司網頁。
    [33] T. Aoyma,Y. Koike,Y. Okajima, N. Konoshi, T. Suzuki, and K. Miyata, IEEE Trans. Elec. Dev. 38 (1991) 2058.
    [34] N. Yamauchi and R. Reif, J. Appl. Phys. 75 (1994) 3235.
    [35] G. K. Giust and T. W. Sigmon, IEEE Trans. Elec. Dev. 47 (2000) 207.
    [36] J. H. Perpezko, J. Non-Cryst. Sol. 156 (1993) 463.
    [37] R.S. Wanger and W.C. Ellis, J. Appl. Phys. 4 (1964) 89.
    [38] N. Higashi, G. Nakagawa, T. Asano, M. Miyasaka, and J. Stoemenos, Jpn. J. Appl. Phys. 45 (2006) 4347.
    [39] H. Kanno, A. Kenjo, T. Sadoh, and M. Miyao, Jpn. J. Appl. Phys. 45 (2006) 4351.
    [40] M. S. Haque, H. A. Naseem, and W. D. Brown, J. Appl. Phys.79 (1996) 7529.
    [41] L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, J. Appl. Phys. 62 (1987) 3647.
    [42] C. Y. Hou and Y. S. Wu, Jpn. J. Appl. Phys. 45 (2006) 5667.
    [43] S.W. Lee, Y.C. Jeon, and S.K. Joo, Appl. Phys. Lett. 66 (1995) 1671.
    [44] T. Serikawa, IEEE Trans. Elec. Dev. 49 (2002) 820.
    [45] Y.D.Son, K.D.Yang, B.S Bae, K. C. Park, and J.Jang, J. Non-Cryst. Sol. 352 (2006) 1745.
    [46] C. W. Lin, S. C. Lee, and Y. S. Lee, Jpn. J. Appl. Phys. 44 (2005) 7319.
    [47] C. L. Fan, T. H. Yang, and C. I. Lin, Jpn. J. Appl. Phys. 45 (2006) L973.
    [48] G. Andra, J.Bergmann, F. Falk, and E. Ose, Appl. Surf. Sci. 154 (2000) 123.
    [49] S. J. Park, Y. M. Ku , K. H. Kim , E. H. Kim, B. K. Cho, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, Thin Solid Films 511 (2006) 243.
    [50] S. Friligkos,V. Papaioannou, J. Stoemenos, R. Carluccio,S. Cina, and G. Fortunato, J.Cryst. Grow. 182 (1997) 341.
    [51] D. B. Meakin, P. A. Coxon, P. Migliorato, J. Stoemenos, and N. A. Economou, Appl. Phys. Lett. 50 (1987) 1894.
    [52] H. Matsumura, Jpn. J. Appl. Phys. 28 (1989) 2157.
    [53] K. C. Hsu, H. Chang, and H. L. Hwang, J. Appl. Phys. 73 (1993) 4841.
    [54] K. Murakami, N. Fukata, S. Sasaki, K. Ishioka, M. Kitajima, S. Fujimura, J. Kikuchi, and H. Haneda, Phys. Rev. Lett. 77 (1996) 3161.
    [55] E.P. Donovan, F.Spaepen, D.Turnbull, J.M.Poate, and D.C.Jacobson, Appl. Phys. Lett. 42(1983) 689.
    [56] M. Hatano, S. Moon, M. Lee, K. S., and C.P. Grigoropoulos, J. Non-Cryst. Sol. 266 (2000) 654.
    [57] G. Williams, D. Sands, R. M. Geatches, and K. J. Reeson, Appl. Phys. Lett. 69 (1996) 1623.
    [58] D. H. Auston, C. M. Surko, T. N. C. Venkatesan, R. E. Slusher, and J. A. Golovchenko, Appl. Phys. Lett. 33 (1978) 437.
    [59] K. Murakami, O. Eryu, K. Takita, and K. Masuda, Phys. Rev. Lett. 59 (1987) 2203.
    [60] M. O. Thompson, G. J. Galvin, and J. W. Mayer, Phys. Rev. Lett. 52 (1984) 2360.
    [61] M. Hatano, S. Moon, M. Lee, K. Suzuki, and C. P. Grigoropoulos, J. Appl. Phys. 87 (2000) 36.
    [62] J. J. P. Bruines, R. P. M. van Hal, H. M. J. Boots,W. Sinke, and F. W. Saris, Appl. Phys. Lett. 48 (1986) 1252.
    [63] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano, and Y. Kuwano, Jpn. J. Appl. Phys. 30 (1991) 3700.
    [64] T. Sameshima, H. Watakabe, N. Andoh, and S. Higashi, Thin Solid Films 487 (2005) 63.
    [65] J. H. Werner, R. Dassow, T. J. Rinke, J. R. Köhler, and R. B. Bergmann, Thin Solid Films 383 (2001) 95.
    [66] I. C. Hsieh, B. R. Wu, S.Y. Lien, and D. S. Wuu, Thin Solid Films 493 (2005) 185.
    [67] A. A. D. T. Adikaari, and S. R. P. Silva, J. Appl. Phys. 97(2005) 114305.
    [68] J. Siegel, J. Solis, and C. N. Afonso, Appl. Phys. Lett. 75 (1999) 1071.
    [69] D. H. Lowndes, R. F. Wood, and J. Narayan, Phys. Rev. Lett. 52 (1984) 561.
    [70] R.F.Wood, D.H. Lowndes, and J. Narayan, Appl. Phys. Lett. 44 (1984) 770.
    [71] S. M. Lee and David G. Cahill, J. Appl. Phys. 81 (1997) 2590.
    [72] 楊育邦,”單晶矽晶粒之薄膜電晶體開發”,國立台灣科技大學 電子工程系 碩士論文,中華民國九十五年七月三十一日。
    [73] K. Law, J. White, and N. Turner, Digest of Technical Papers, Santa Clara, CA, 1995, p.67.
    [74] P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, D. K. Fork, and S. E. Ready, Appl. Phys. Lett. 64 (1994) 28.
    [75] M. He, R. Ishihara, Y. Hiroshima, S. Inoue, T. Shimoda, W. Metselaar, and K. Beenakker, Jpn. J. Appl. Phys. 45 (2006) 1.
    [76] S. A. Cohen, T.O. Sedgwick, and J.L. Speidel, Mat. Res. Soc. Symp. Proc. 23, 231 (1984).
    [77] H. Watanabe, H. Miki, S. Sugai, K. Kawasaki, and T. Kioka, Jpn. J. Appl. Phys. 33 (1994) 4491.
    [78] 陳佳斌,”線上光學檢測技術於準分子雷射退火矽膜之再結晶特性研究”,國立台灣科技大學 機械工程系 碩士論文,中華民國 九十四年六月三十日。
    [79] 李箕峯,”以線上光學監控技術量測與分析準分子雷射退火之低溫多晶矽製程參數研究”,國立台灣科技大學 機械工程系 碩士論文,中華民國九十五年六月十二日。
    [80] S. Moon, M. Hatano, M. Lee, and C. P.Grigoropoulos, Int. J. Heat and Mass Transfer 45 (2002) 2439.
    [81] K. Kitahara, R. Yamazaki, T. Kurosawa, K. Nakajima, and A. Moritani, Jpn. J. Appl. Phys. 41 (2002) 5055.
    [82] B.Rezek, C.E.Nebel, and M.Stutzmann, Jpn. J. Appl. Phys. 38 (1999) L1083.
    [83] F.Secco d’Aragona, J. Electrochem. Soc. 119 (1972) 948.
    [84] T. Maruyama, T. Shiraiwa, N. Fujita, Y. Kawamura, S. Naritsuka, and M. Kusunoki, Jpn. J. Appl. Phys. 45 (2006) 7231.
    [85] C. Godet, B. Marchon, and M.P. Schmidt, Thin Solid Films 155 (1987) 227.
    [86] http://www.renishaw.com/ Renishaw公司網頁。
    [87] http://www.veeco.com/ Digital Instruments公司網頁。
    [88] http:// www.jeol.com/日本電子株式會社( JEOL Ltd.) 公司網頁。
    [89] E. Fogarassy, J. Venturini, J. Korean Phys. Soci. 48 (2006) 40.
    [90] J.J.P. Bruines, R.P. M. van Hal, and H.M.J. Boots, Appl. Phys. Lett. 49(1986) 1160.
    [91] J. Boneberg and P. Leiderer, Phys. Stat. sol. (a) 166(1998) 643.
    [92] H. J. Song,”Excimer-laser-induced Phase Transformation of Si Thin Films on SiO2 at High Temperatures,” Ph.D. Dissertation of Engineering and Applied Science, Columbia University (1998).
    [93] A. Shih, C. Y. Meng , S. C. Lee, and M. Y. Chern, J. Appl. Phys. 88 (2000) 3725.
    [94] J. Boneberg, J. Nedelcu, H. Bender, and P. Leiderer, Mater. Sci. Eng. A, 173 (1993) 347.
    [95] S.A. Wode, K. Dettmer, and F.R.Kessler, Thin solid films 266 (1995) 78.
    [96] F. Falk and G. Andra, J. Cryst. Grow. 287 (2006) 397.
    [97] T. Sameshima, M. Hara, N. Sano, and S. Usui, Jpn. Appl. Phys. 29 (1990) L1363.
    [98] J. P. Leonard and J. S. Im, Appl. Phys. Lett. 78 (2001) 3454.
    [99] K. C. Park, J. H. Jeon, C. M. Park, M. C. Lee, and M. K. Han, Appl. Phys. Lett. 75 (1999) 460.
    [100] S. R. Stiffler and M. O. Thompson, Phys. Rev. B 43 (1991) 9851.
    [101] A.Pecora,R.Carluccio, L. Mariucci, G. Fortunato, D. Murra, S.Bollanti, and P. Di Lazzaro, Thin Solid Films 427(2003) 319.
    [102] P. Baeri, G. Foti, and J. M. Poate, Phys. Rev. Lett. 45 (1980) 2036.
    [103] J. Narayan, S. J. Pennycook, D. Fathy, and O. W. Holland, J. Vac. Sci. Technol. 4 (1984) 1495.
    [104] M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate, and D. C. Jacobso, Phys. Rev. Lett. 50 (1983) 896.
    [105] H.J. Leamy, W.L. Brown, G.K. Celler, G. Foti, G.H. Gilmer, and J.C.C. Fan, Appl. Phys. Lett. 38 (1981) 137.
    [106] W. Sinke and F. W. Saris, Phys. Rev. Lett. 53 (1984) 2121.
    [107] R. Ishihara, A. Burtsev, and P.F.A. Alkemade, Jpn. J. Appl. Phys.39 (2000) 3872.
    [108] J. Viatella and R. K. Singh, Mat. Sci. Eng. B 47 (1997) 78.
    [109] P. D. Veneri, M. L. Addonizio, A. Imparato, C. Minarini, C. Privato, and E. Terzini, Mat. Sci. and Eng. B 69 (2000) 227.
    [110] P. C. V. D. Wilt and R. Ishihara, Phys. Stat. Sol.(a) 166 (1998) 619.
    [111] M. Nerding, S. Christiansen, J. Krinke, R. Dassow, J. R. Kohler, J.H. Werner, and H.P. Strunk, Thin Solid Films 383 (2001)110.
    [112] R. Ishihara, W. C. Yeh, T. Hattori, and M. Matsumura, Jpn. J. Appl. Phys. 34 (1995) 1759.
    [113] T.Sameshima and S. Usui, J. Appl. Phys. 74 (1993) 6592.
    [114] E. Spaepen and D. Turnbull, Laser Annealing of Semiconductors, Academic, New York, 1982, pp. 15.
    [115] M. Matsumura, Phys. Stat. Sol. (a) 166 (1998) 715.
    [116] R. Ishihara and M. Matsumura, Jpn. J. Appl. Phys. 34 (1995) 3976.
    [117] S. Moon, Ph. D. Dissertation,” Pulsed Laser Annealing of Solid Thin Films in Application to Thin Film Transistors,” University of California (2001).
    [118] S. Schelz, P. Rocai Cabarrocas, H. Estrade-Szwarckopf, and B. Rousseau, J. Vac. Sci. Technol. 18 (2000) 529.
    [119] D.K.Fork, G.B.Anderson, J.B. Boyce, R. I. Johnson, and P. Mei., Appl. Phys. Lett. 68 (1996) 2138.
    [120] C. Y. Chang, H. Y. Lin, and T. F. Lei, IEEE. Elec. Dev. Lett. 17 (1996) 100.
    [121] F. Simon, J. Brune, and L. Herbst, Appl. Surf. Sci. 252 (2006) 4402.
    [122] D. Pribat, P. Lagagneux, C. Collet, F. Plais, O. Huet, and C. Reita, Dig. Tech. Papers AM-LCD 1998, p.9 (1998).
    [123] D. J. McCulloch and S. D. Brotherton, Appl. Phys. Lett. 66 (1995) 2060.
    [124] M. He, R. Ishihara, W. Metselaar, K. Beenakker, Thin Solid Films 515 (2007) 2872.
    [125] Y. F. Tang, S. R. P. Silva, and M. J. Rose, Appl. Phys. Lett. 78 (2001) 186.
    [126] H. Kakinuma, M. Mohri, M. Sakamoto and T. Tsuruoka, Jpn. J. Appl. Phys. 70 (1991) 7374.
    [127] A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, J. Appl. Phys. 78 (1995) 6999.
    [128] C. Smith, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M.M. Kessels, and M. C. M. van de Sanden, J. Appl. Phys. 94 (2003) 3582.
    [129] T. Motooka and O. W. Holland, Appl. Phys. Lett. 61 (1992) 3005.
    [130] E. Fogarassy, S. de Unamuno, P. Legagneux, F. Plais, D. Pribat, B. Godard, and M. Stehle, Thin Solid Films 337 (1999) 143.
    [131] M. Momiwa, M. Miyao, R. Tsuchiyama, M. Ichikawa, H. Sunami, and T. Tokuyama, Appl. Phys. Lett. 47 (1985) 113.
    [132] H. Watanabe, N. Aoto, S. Adachi, and T. Kikkawa, J. Appl. Phys. 71 (1992) 3538.
    [133] A. Sakai, T. Tatsumi, and T. Niino, Jpn. J. Appl. Phys. 30 (1991) L941.
    [134] Y. Kimura, T. Katoda, Appl. Surf. Science 117 (1997) 790.
    [135] B.A. Weinstein, and G.J.Piermarini, Phys. Rev. B 12 (1975) 1172.
    [136] S. Higashi, N. Ando, K. Kamisako, and T. Sameshima, Jpn. J. Appl. Phys. 40 (2001) 731.
    [137] R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, Appl. Phys. Lett. 40 (1982) 534.
    [138] E. Bustarret, M. A. Hachicha, and M. Brunel, Appl. Phys. Lett. 52 (1998) 1675.
    [139] P. Lengsfeld, N. H. Nickel, and W. Fuhs, Appl. Phys. Lett. 76 (2000) 1680.
    [140] Y.O. Kimura, M. Kishi, and T. Katoda, J. Appl. Phys. 87 (2000) 4017.
    [141] L.L.Kazmerski, “Polysilicon and Amorphous Thin Film Devices”, Academic, New York, 1980.
    [142] Y. Morita and T. Noguchi, Jpn. Appl. Phys. 28 (1989) 309.
    [143] W. C. Yeh, Ph. D. dissertation, Department of Physical Electronics, Tokyo Institute of Technology, Japan, 2000.
    [144] W. C. Yeh and M. Matsumura, Jpn. J. Appl. Phys. 40 (2001) 492.
    [145] G. E. Jellison, Jr. and F. A. Modine, J. Appl. Phys., 76 (1994) 3758.
    [146] T.Toyama, R. Muhida, T. Harano, T.Sugano, M. Okajima, and H. Okamoto, Jpn. J. Appl. Phys. 42 (2003) L1347.
    [147] S. Higashi, H. Kaku, T. Okada, H. Murakami, and S. Miyazaki, Jpn. J. Appl. Phys. 45 (2006) 4313.
    [148] G. Aichmayr, D. Toet, M. Mulato , P.V. Santos , A. Spangenberg, and R.B. Bergmann, J. Non-Cryst. Sol. 227(1998) 921.
    [149] Y. Nakata, H. Kaki, and S. Horita, Jpn. J. Appl. Phys. 43 (2004) 2630.
    [150] Y. Nakata, H. Kaki, and S. Horita, Jpn. J. Appl. Phys. 43 (2004) 2630.
    [151] K. Ishikawa, M. Ozawa, C. H. Oh, and M. Matsumura, Jpn. J. Appl. Phys. 37 (1998) 731.
    [152] A. Hara, M. Takei, F. Takeuchi, K. Suga, K. Yoshino, M. Chida, T. Kakehi, Y. Ebiko, Y. Sano, and N. Sasaki, Jpn. J. Appl. Phys. 43 (2004) 1269.
    [153] S.J. Park, S.H. Kang, Y.M. Ku, and J. Jang, Eur. Phys. J. Appl. Phys. 31 (2005) 165.
    [154] S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, J. Appl. Phys. 82 (1997) 4086.
    [155] J. Y. Tsao and P. S. Peercy, Phys. Rev. Lett. 58 (1987) 2782.
    [156] J. Narayan, C. W. White, M. J. Aziz, B. Stritzker, and A. Walthuis, J. Appl. Phys. 57 (1985) 564.
    [157] G.E.Jellison and D.H. Lowndes, Appl. Phys. Lett. 47 (1985) 718.
    [158] W. C. Yeh, H. G. Huang, I. C. Niu, and C. C. Chen, Jpn. J. Appl. Phys. 46 (2007) 1466.
    [159] L. Mariucci, R. Carluccio, A. Pecora, V. Foglietti, G. Fortunato, P. Legagneux, D. Pribat, D. Della Sala, and J. Stoemenos, Thin Solid Films 337 (1999) 137.
    [160] C. Battaglin, F. Caccavale, A. , Menelle, M. Montecchi, E. Nichelatti, F. Nicoletti, and P. Polato, Thin Solid Films 351 (1999) 176.
    [161] W. C. Yeh and M. Matsumura, Jpn. J. Appl. Phys. 41 (2002) 1909.
    [162] D. H. Lowndes, G. E. Jellison, S. J. Pennycook, S. P. Withrow, and D. N. Mashburn, Appl. Phys. Lett. 48 (1986)1389.
    [163] N. Matsuo, N. Kawamoto, and H, Hamada, Jpn. J. Appl. Phys. 43 (2004) 532.
    [164] A.C.Y. Liu, J.C. McCallum, and W. L. Jung, J. Mater. Res., 16 (2001) 3229.
    [165] Y. Morimoto, S. Nakanishi, N. Oda, T. Yamaji, H. Matuda,H. Ogata, and K. Yoneda, J. Electrochem. Soc. 141 (1994) 1.
    [166] M. Hatano, S. Moon, M. Lee, C. P. Grigoropoulos, and K. Suzuki, J. Korean Phys. Sol. 39 (2001) S419.
    [167] S. J. Park, K. H. Kim, and J. Jang, J. Cryst. Grow. 297 (2006) 382.
    [168] Y. Sugawara, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, and A. Mimura, Jpn. J. Appl. Phy. 46 (2007) L164.
    [169] N. Sano, M. Maki, N. Andoh, and T. Sameshima, Jpn. J. Appl. Phy. 46 (2007) 1254.
    [170] S. Higashi, H. Kaku, T. Okada, H. Murakami, and S. Miyazaki, Jpn. J. Appl. Phys. 45 (2005) 4313.
    [171] H. Y. Yoshikawa, Y. Hosokawa, and H. Masuhara, Jpn. J. Appl. Phys. 45 (2006) L23.
    [172] J. R. Kohler, R. Dassow, R. B. Bergmann, J. Krinke, H. P. Strunk, and J. H. Werner, Thin Solid Films 337 (1999) 129.
    [173] R.B.Bergmann, J. Kohler, R. Dawssow, C. Zaczek, and J. H. Werner, Phys. Stat. Sol. 166 (1998) 587.
    [174] K. Sakaike, S. Higashi, H. Kaku, H. Murakami, and S. Miyazaki, Jpn. J. Appl. Phys. 46 (2007) 1276.
    [175] M. Cuscuna, G. Bonfiglietti, A. di Gaspare, L. Maiolo, A. Pecora, L. Mariucci, and G. Fortunnato, J. Non-Cryst. Sol. 352 (2006) 1723.
    [176] V. Provitera, A. L. Magna, G. Fortunato, M. Camalleri, A. Magri, F. Simon, and B. G. Svensson, Mat. Sci. & Eng. B 114(2004) 92.
    [177] F. Zhang, X. Liu, Gang Ni, and Y. Du, J. Cryst. Grow. 260 (2004) 102.
    [178] H. Kirimura, Y. Uraoka, T. Fuyuki, M. Okuda, and I. Yamashita, Appl. Phys. Lett. 86 (2005) 262106.
    [179] T.Shimatani, T.Matsumoto, T. Hashimoto, N. Kato, S.Yamada, and M. Koyanagi, Jpn. J. Appl. Phys. 33 (1994) 619.
    [180] S. Munetoh, T. Kuranaga, B. M. Lee, T. Motooka, T. Endo, and T. Warabisako, Jpn. J. Appl. Phys. 45 (2006) 4344.
    [181] C. H. Tu, T. C. Chang, P. T. Liu, C.Y. Yang, L.W. Feng, C.C. Tsai, L.T. Chang, Y. C. Wu, S. M. Sze, and C. Y. Chang, J. Display Tech. 3 (2007) 45.
    [182] V. Rana, R. Ishihara, Y. Hiroshima, S. Inoue, T. Shimoda, W. Metselaar, and K. Beenakker, IEEE Trans. Elec. Dev. 54 (2007) 124.

    QR CODE