簡易檢索 / 詳目顯示

研究生: 何漢祥
Hang-Xiang He
論文名稱: 硒化銅奈米線及硒化銀-硒化銅異質結構奈米線製備及電性研究
Syntheses and Electrical Properties of CuSe Nanowires and Ag2Se-CuSe Heterostructure Nanowires
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 蔡孟霖
Meng-Lin Tsai
周賢鎧
Shyankay Jou
葉炳宏
Ping-Hung Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 98
中文關鍵詞: 奈米線二極體異質結構離子交換
外文關鍵詞: nanowires, p-n diode, heterostructure, cation exchange
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要.............................................................................................................I Abstract...................................................................................................III 致謝..........................................................................................................VI List of Abbreviations and Acronyms......................................................X List of Figure and Tables.......................................................................XI Chapter 1. Introduction...........................................................................1 1.1 Nanotechnology..............................................................................1 1.1.1 One-dimensional Nanostructure............................................2 1.1.2 Chemical Vapor Deposition (CVD).......................................2 1.1.3 Vacuum Hydraulic Pressure Injection Process......................3 1.2 Cation Exchange.............................................................................5 1.2.1 Template-engage Method......................................................7 1.3 The Crystal Structure and Characteristics of CuSe........................8 1.4 The Crystal Structure and Characteristics of Ag2Se.....................11 1.5 Flow Chart of Research................................................................13 1.6 Application of Nanowires.............................................................15 Chapter 2. Experimental Section..........................................................17 2.1 Preparation of CuSe Bulk.............................................................17 2.2 Fabrication of AAO Template......................................................20 2.3 Die Casting...................................................................................24 2.3.1 AAO Template Removing Process......................................26 2.4 Ag2Se-CuSe Heterostructure Fabrication.....................................27 2.5 Ag2Se-CuSe Nanowires Device Fabrication................................29 2.6 Ag2Se-CuSe Nanowires Device Measurement.............................30 Chapter 3. Results and Discussions.......................................................31 3.1 Motivation of Ag2Se-CuSe Nanowires Device............................31 3.2 Characterization of CuSe/Ag2Se Nanowires................................33 3.2.1 SEM observation.................................................................33 3.2.2 EDS evidence......................................................................38 3.2.3 Crystal structures and XRD results.....................................41 3.2.4 TEM analysis and microstructure observation....................47 3.2.5 Raman Investigation............................................................51 3.3 Band Structures of Ag2Se-CuSe and Semiconductor-Metal.........53 3.3.1 Band structure of Ag2Se-CuSe............................................53 3.3.2 Band structure of semiconductor-metal...............................56 3.4 The Device Performance of Ag2Se-CuSe Nanowires...................59 Chapter 4. Summary and Conclusions.................................................62 4.1 The Investigation of Ag2Se-CuSe Nanowires and Applications...62 Chapter 5. Future Works.......................................................................64 5.1 Future Works of Doping Effect in CuSe System..........................64 References................................................................................................65 Appendix.................................................................................................80

    References
    [1] Richard. P. Feynmen, “There’s plenty of room at the bottom”, the Annual Meeting of the American Physical Society on 29th, 1959.
    [2] M. G. Milvidskii & V. V. Chaldyshev, “Nanometer-size atomic clusters in semiconductors- a new approach to tailoring material properties”, Semiconductors, 1998, 32, 457-466.
    [3] Qian-Gang Fu, He-Jun Li, Xiao-Hong Shi, Ke-Zhi Li, Jian Wei, and Zhi-Biao Hu, “Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst”, Materials Chemistry and Physics, 2006, 100, 108-111.
    [4] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der waals heterostructures”, Science, 2016, 353, 9439-9451.
    [5] Ming-Hui Chiu, Hao-Ling Tang, Chien-Chih Tseng, Yimo Han Areej Aljarb, Jing-Kai Huang, Yi Wan, Jui-Han Fu, Xixiang Zhang Wen-Hao Chang, David A. Muller, Taishi Takenobu, Vincent Tung and Lain-Jong Li, “Metal‐guided selective growth of 2D materials: demonstration of a bottom‐up CMOS inverter”, Advance Material. 2019, 31, 1900861-1900869.
    [6] Yumeng Shi, Ki Kang Kim, Alfonso Reina, Mario Hofmann, Lain-Jong Li, and Jing Kong, “Work function engineering of graphene electrode via chemical doping”, ACS Nano, 2010, 4, 2689-2694.
    [7] Yung-Huang Chang, Wenjing Zhang, Yihan Zhu, Yu Han, Jiang Pu, Jan-Kai Chang, Wei-Ting Hsu, Jing-Kai Huang, Chang-Lung Hsu, Ming-Hui Chiu, Taishi Takenobu, Henan Li, Chih-I Wu, Wen-Hao Chang, Andrew Thye Shen Wee, and Lain-Jong Li, “Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection”, ACS Nano, 2014, 4, 8582-8590.
    [8] Hong Wan & Harry E. Ruda, “A study of the growth mechanism of CVD-grown ZnO nanowires”, J Mater Sci: Mater Electron, 2010, 21, 1014-1019.
    [9] Bing Deng, Zhenqian Pang, Shulin Chen, Xin Li, Caixia Meng, Jiayu Li, Mengxi Liu, Juanxia Wu, Yue Qi, Wenhui Dan, Hao Yan, Yanfeng Zhang, Jin Zhang, Ning Kang, Hongqi Xu, Qiang Fu, Xiaohui Qiu, Peng Gao, Yujie Wei, Zhongfan Liu, and Hailin Peng, “Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates”, ACS Nano 2017, 11, 12, 12337-12345.
    [10] Tse-An Chen, Chih-Piao Chuu, Chien-Chih Tseng, Chao-Kai Wen, H.-S. Philip Wong, Shuangyuan Pan, Rongtan Li, Tzu-Ang Chao, Wei-Chen Chueh, Yanfeng Zhang, Qiang Fu, Boris I. Yakobson, Wen-Hao Chang, and Lain-Jong Li, “Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)”, Nature, 2020, 579, 219-223.
    [11] Shih-Hsun Chen, Chien-Chon Chen, Chuen-Guang Chao, “ Novel morphology solidification behavior of eutectic bismuth-tin (Bi-Sn) nanowires”, Journal of Alloys and Compounds, 2009, 481, 270-273.
    [12] Chiu-Yen Wang and Han-Xiang He, “Tunable optical and magnetic properties of Ni-doped CuSe nanowires using an anodic aluminum oxide template assisted hydraulic method”, Nanotechnology, 2019, 315704-315710.
    [13] Dmitri Routkevitch, Terry Bigioni, Martin Moskovits, and Jing Ming Xu, “Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates”, Journal of Physical Chemistry A, 1996, 100, 14037-14047.
    [14] Zebo Fang, Yinyue Wang, Xinping Peng, Xueqin Liu, and Congmian Zhen, “Structural and optical properties of ZnO films grown on the AAO templates”, Materials Letters, 2003, 57, 4187-4190.
    [15] Woo Lee and Sang-Joon Park, “Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures”, Chemical Reviews, 2014, 114, 7487−7556.
    [16] Shiyong Zhao, Helene Roberge, Arthur Yelon, and Teodor Veres, “New application of AAO template:  A mold for nanoring and nanocone arrays”, Journal of the American Chemical Society, 2006, 128, 38, 12352-12353.
    [17] Yi-Hsin Ting, Jui-Yuan Chen, Chun-Wei Huang, Ting-Kai Huang, Cheng-Yu Hsieh, and Wen-Wei Wu, “Observation of resistive switching behavior in crossbar core-shell Ni/NiO nanowires memristor”, Small, 2018,14,1703153-1703162.
    [18] Bryce Sadtler, Denis O. Demchenko, Haimei Zheng, Steven M. Hughes, Maxwell G. Merkle, Ulrich Dahmen, Lin-Wang Wang, and A. Paul Alivisatos, “Selective facet reactivity during cation exchange in cadmium sulfide nanorods”, Journal of the American Chemical Society, 2009, 131, 5285-5293.
    [19] Chih-Shan Tan, Shih-Chen Hsu, Wei-Hong Ke, Lih-Juann Chen, and Michael H. Huang, “ Facet-dependent electrical conductivity properties of Cu2O crystals”, Nano Letter. 2015, 15, 2155-2160.
    [20] Jessy B. Rivest and Prashant K. Jain, “ Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing”, Chemical Reviews, 2013, 42, 89-96.
    [21] Richard D. Robinson, Bryce Sadtler, Denis O. Demchenko, Can K. Erdonmez, Lin-Wang Wang, and A. Paul Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange”, Science, 2007, 317, 355-358.
    [22] Yi Xie, Giovanni Bertoni, Andreas Riedinger, Ayyappan Sathya, Mirko Prato, Sergio Marras, Renyong Tu, Teresa Pellegrino, and Liberato Manna,“Nanoscale transformations in covellite (CuS) nanocrystals in the presence of divalent metal cations in a mild reducing environment”, Chemistry of Materials, 2015, 27, 7531- 7537.
    [23] Hongbo Li, Marco Zanella, Alessandro Genovese, Mauro Povia, Andrea Falqui, Cinzia Giannini, and Liberato Manna,“Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases”, Nano Letter, 2011, 11, 4964-4970.
    [24] Julie L. Fenton, Benjamin C. Steimle, and Raymond E. Schaak, “Structure-selective synthesis of wurtzite and zincblende ZnS, CdS, and CuInS2 using nanoparticle cation exchange reactions”, Inorganic Chemistry 2019, 58, 1, 672-678.
    [25] Emil A. Hernandez-Paga, Andrew O’Hara, Summer L. Arrowood, James R. McBride, Jordan M. Rhodes, Sokrates T. Pantelides, and Janet E. Macdonald, “Transformation of the anion sublattice in the cation-exchange synthesis of Au2S from Cu2−xS nanocrystals”, Chemistry of Materials, 2018, 30, 24, 8843-8851.
    [26] Brandon J. Beberwyck, Yogesh Surendranath, and A. Paul Alivisatos, “Cation exchange: a versatile tool for nanomaterials synthesis”, The Journal of Physical Chemistry C, 2013, 117, 19759-19770.
    [27] Monika Chaudhry and Ingmar Persson, “Transfer thermodynamic study on the copper (II) ion from water to methanol, acetonitrile, dimethyl sulfoxide and pyridine”, Faraday Transactions, 1994, 90, 2243-2248.
    [28] Chih-Shan Tan, Hung-Ying Chen, Hsueh-Szu Chen, Shangjr Gwo and Lih-Juann Chen,“Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method”,Scientific Reports, 2015, 5, 13759-13766.
    [29] Yugang Sun, Brian T. Mayers, and Younan Xia, “Template-engaged replacement reaction:  a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors”,Nano Letters 2002, 2, 481-485.
    [30] Xue-JunWu, Xiao Huang, Juqing Liu, Hai Li, Jian Yang, Bing Li,Wei Huang, and Hua Zhang, “Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation”, Angew. Chem. Int. Ed, 2014, 53, 5083-5087.
    [31] Byron Gates, Yiying Wu, Yadong Yin, Peidong Yang, and Younan Xia,“Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se”, Journal of the American Chemical Society, 2001, 123, 11500-11501.
    [32] Yue Wu, Jie Xiang, Chen Yang, Wei Lu, and Charles M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature, 2004, 430, 61-65.
    [33] Dong Hee Son, Steven M. Hughes, Yadong Yin, and A. Paul Alivisatos,“Cation exchange reactions in ionic nanocrystals”, Science, 2004, 306, 1009-1012.
    [34] Qiubo Zhang, Kuibo Yin, Hui Dong, Yilong Zhou, Xiaodong Tan, Kaihao Yu, Xiaohui Hu, Tao Xu, Chao Zhu, Weiwei Xia, Feng Xu, Haimei Zheng, and Litao Sun, “Electrically driven cation exchange for in situ fabrication of individual nanostructures”, Nature Communications, 2017, 8, 14889-14896
    [35] Thomas Heine, “Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties”, Accounts of Chemical Research, 2015, 48, 1, 65-72.
    [36] Ming-Yang Li, Yumeng Shi, Chia-Chin Cheng, Li-Syuan Lu, Yung-Chang Lin, Hao-Lin Tang, Meng-Lin Tsai, Chih-Wei Chu, Kung-Hwa Wei, Jr-Hau He, Wen-Hao Chang, Kazu Suenaga, and Lain-Jong Li,“Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface”, Science, 2015, 349, 524-528.
    [37] Jian Wang, Huiming Ji, Junyun Lai, Rongsen Yuan, Xuerong Zheng, Hui Liu, and Zhengguo Jin,“Oriented klockmannite CuSe nanoplates: polylol solution synthesis and its application on a inorganic-organic hybrid photodetector”, Crystal Growth & Design, 2016, 16, 6250-6262.
    [38] Yong-Qiang Liu, Feng-Xia Wang, Yan Xiao, Hong-Dan Peng, Hai-Jian Zhong, Zheng-Hui Liu ,and Ge-Bo Pan,“Facile microwave-assisted synthesis of klockmannite CuSe nanosheets and their exceptional electrical properties”, Scientific Report, 2014, 4, 5998-6016.
    [39] Glazov, V. M., Pashinkin, A. S., & Fedorov, V. A ,“ Phase equilibria in the Cu-Se system”, Inorganic Materials, 2000, 36, 641-652.
    [40] Marhoun Ferhat and Jiro Nagao, “Thermoelectric and transport properties of β-Ag2Se compounds”, Journal of Applied Physics, 2000, 88, 813-818.
    [41] Juhee Son, Dongsun Choi, Mihyeon Park, Juyeong Kim, and Kwang Seob Jeong, “Transformation of colloidal quantum dot: from intraband transition to localized surface plasmon resonance”, Nano Letter, 2020, 20, 7, 4985-4992.
    [42] Mihyeon Park, Dongsun Choi, Yoonchang Choi, Hang-beum Shin,and Kwang Seob Jeong, “Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals”, ACS Photonics 2018, 5, 1907-1911.
    [43] Jaewon Jang, Feng Pan, Kyle Braam, and Vivek Subramanian, “Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications”, Advance Function Materials, 2012, 24, 3573-3576.
    [44] Byron Gates, Brian Mayers, YiyingWu, Yugang Sun, Bryan Cattle, Peidong Yang, and Younan Xia,“Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room Temperature”, Advance Function Materials, 2002, 12, 679-686.
    [45] Li Na Quan, Joohoon Kang, Cun-Zheng Ning, and Peidong Yang, “Nanowires for Photonics”, Chem. Rev. 2019, 119, 15, 9153-9169.
    [46] Ruoxue Yan, Daniel Gargas, and Peidong Yang,“Nanowire photonics”, Nature Photonics, 2009, 3, 569-576.
    [47] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, and Peidong Yang,“Room-temperature ultraviolet nanowire nanolasers”, Science, 2001, 292, 1897-1899.
    [48] Haoquan Yan, Rongrui He, Justin Johnson, Matthew Law, Richard J. Saykally, and Peidong Yang, “Dendritic nanowire ultraviolet laser array”, Journal of the American Chemical Society, 2003, 125, 16, 4728-4729.
    [49] Xiangfeng Duan, Yu Huang, Ritesh Agarwal & Charles M. Lieber , “Single-nanowire electrically driven lasers”, Nature, 2003, 421, 241-245.
    [50] Justin C. Johnson, Heon-Jin Choi, Kelly P. Knutsen, Richard D. Schaller, Peidong Yang, and Richard J. Saykall,“Single gallium nitride nanowire lasers”, Nature Materials, 2002, 1,106-110.
    [51] Marta Michalska-Domanska, Małgorzata Norek, Wojciech J. Stępniowski, and BogusławBudner, “Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum-a comparative study with the AAO produced on high purity aluminum”, Electrochimica Acta, 2013, 105, 424-432.
    [52] Hyunsuk Woo, Sujaya Kumar Vishwanath, and Sanghun Jeon, “ Resistive switching characteristics of a modified active electrode and Ti buffer layer in CuSe-based atomic switch”, Journal of Alloys and Compounds, 2018, 753, 551-557.
    [53] Subhash C. Singh, Yao Peng, James Rutledge, and Chunlei Guo, “Photothermal and joule heating induced negative- photoconductivity based ultraresponsive and near-zero-biase copper selenide photodetectors”, ACS Applied Electronic, 2019, 1,1169-1178.
    [54] August Dorn, Peter M. Allen, Daniel K. Harris, and Moungi G. Bawendi, “In situ electrical monitoring of cation exchange in nanowires”, Nano Letters, 2010, 10, 10, 3948-3951.
    [55] Chih-Shan Tan, Ching-Hung Hsiao, Shau-ChiehWang, Pei-Hsuan Liu, Ming-Yen Lu, Michael H. Huang, Hao Ouyang, and Lih-Juann Chen,“Sequential cation exchange generated superlattice nanowires forming multiple p-n heterojunctions”, ACS Nano, 2014, 8, 9422-9426.
    [56] Andrew Barnabas Wong, Sarah Brittman, Yi Yu, Neil P. Dasgupta, and Peidong Yang, “Core-shell CdS-Cu2S nanorod array solar cells”, Nano Letter, 2015, 15, 6, 4096-4101.
    [57] Sedat Dogan, Stefan Kudera, Zhiya Dang, Francisco Palazon, Urko Petralanda, Sergey Artyukhin, Luca De Trizio, Liberato Manna, and Roman Krahne, “Lateral epitaxial heterojunctions in single nanowires fabricated by masked cation exchange”, Nature Communications, 2018, 9, 505-513.
    [58] Qiubo Zhang, Kuibo Yin, Hui Dong, Yilong Zhou, Xiaodong Tan, Kaihao Yu, Xiaohui Hu, Tao Xu, Chao Zhu, Weiwei Xia, Feng Xu, Haimei Zheng, and Litao Sun, “Electrically driven cation exchange for in situ fabrication of individual nanostructures”, Nature Communications, 2017, 8, 14889-14896.
    [59] Alberto Casu, Alessandro Genoves, Liberato Manna, Paolo Longo, Joka Buha, Gianluigi A. Botton, Sorin Lazar, Mousumi Upadhyay Kahaly, Udo Schwingenschloegl, Mirko Prato, Hongbo Li, Sandeep Ghosh, Francisco Palazon, Francesco De Donato, Sergio Lentijo Mozo, Efisio Zuddas, and Andrea Falqui, “Cu2Se and Cu nanocrystals as local sources of copper in thermally activated in situ cation exchange”, ACS Nano, 2016, 10, 2, 2406-2414.
    [60] Sedat Dogan, Stefan Kudera, Zhiya Dang, Francisco Palazon, Urko Petralanda, Sergey Artyukhin, Luca De Trizio, Liberato Manna, and Roman Krahne,“Lateral epitaxial heterojunctions in single nanowires fabricated by masked cation exchange”, Nature Communications, 2018, 9, 505-513.
    [61] Ali Reza Shojaei, , Zahra Nourbakhsh, Aminollah Vaez, and Mohammad Dehghani, “Ab-initio investigation of the structural and unusual electronic properties of α-CuSe (klockmannite)”, Chinese Physics B, 2013, 22, 127102-127111.
    [62] A.G.Abdullayev, R.B.Shafizade, E.S.Krupnikov, and K.V.Kiriluk, “Phase formation and kinetics of the phase transition in Ag2Se thin films”, Thin Solid Films, 1983, 106, 175-184.
    [63] A. B. Kulkarni, M. D. Uplane, and C. D. Lokhande,“Preparation of silver selenide from chemically deposited silver films”, Thin Solid Films, 1995, 120, 14-18.
    [64] Unyong Jeong and Younan Xia, “Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids”, Angewandte Chemie, 2005, 117, 3159-3163.
    [65] Marhoun Ferhat and Jiro Nagao,“Thermoelectric and transport properties of β-Ag2Se compounds”, Journal of Applied Physics , 2000, 88, 813-818.
    [66] Natkritta Boonprakob, and Anchalee Masa-Ad,“Synthesis of indium sulfide/zinc oxide composites films and their photocatalytic activities”, Applied Mechanics and Materials, 2019, 886, 146-153.
    [67] Ralph G. Pearson,“Absolute electronegativity and hardness: application to inorganic chemistry”, Inorganic Chemistry, 1988, 27, 734-740.
    [68] Anitha Abraham, Tarachand, Gunadhor S.Okram, Rajani Jacob, P.V. Sreenivasan, and Rachel Reena Philip,“Low temperature electrical conductivity and seebeck coefficient of nanostructured CuSe thin films with Ga addition”, Vacuum, 2016, 219, 74-78.
    [69] M C Santhosh Kumar and B Pradeep, “Structural, electrical and optical properties of silver selenide thin films”, Semiconductor Science and Technology, 2002, 17, 261-267.
    [70] Xiwei Zhang, Xiujuan Zhang, Liu Wang, Yiming Wu, Yan Wang, Peng Gao, Yuanyuan Han, and Jiansheng Jie, “ZnSe nanowire/Si p-n heterojunctions: device construction and optoelectronic applications”, Nanotechnology, 2013, 24, 395201-395208.
    [71] Jae-Gil Lee, Bong-Ryeol Park, Chun-Hyung Cho, Kwang-Seok Seo, and Ho-Young Cha, “Low turn-On voltage AlGaN/GaN-on-Si rectifier with gated ohmic anode”, IEEE Electron Device Letters, 2013, 34, 214 - 216.
    [72] Jessy B. Rivest, Sarah L. Swisher, Lam-Kiu Fong, Haimei Zheng, and A. Paul Alivisatos,“Assembled monolayer nanorod heterojunctions”, ACS Nano, 2011, 5, 3811-3816.
    [73] J.Weszka, Ph.Daniel, A.Buriana, A.M.Burian, A.T.Nguyen, “Raman scattering in In2Se3 and InSe2 amorphous films”, Journal of Non-Crystalline Solids, 2000, 265, 98-104.
    [74] Motohiko Ishii, Hiroaki Wada, “Raman spectroscopic studies of silver-tantalum sulfide, silver-niobium sulfide and silver-tantalum selenide with argyrodite structures”, Materials Research Bulletin, 1998, 23, 1269-1276.
    [75] Bei Shi, Jonathan Klamkin, “Defect engineering for high quality InP epitaxially grown on on-axis (001) Si”, 2020, Journal of Applied Physics, 127, 033102-033114.
    [76] H. Gottschalk, G. Patzer, and H. Alexander,“Stacking fault energy and ionicity of cubic III-V compounds”, Physica Status Solidi, 1978, 46, 207-218.
    [77] Zongyang Hu, Kazuki Nomoto, Bo Song, Mingda Zhu, Meng Qi, Ming Pan, Xiang Gao, Vladimir Protasenko, Debdeep Jen, and Huili Grace Xing,“Near unity ideality factor and shockley-read-hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown”, Applied Physics Letters, 2015, 107, 243501-243507.
    [78] Bing Ren, Meiyong Liao, Masatomo Sumiya, Linjun Wang, Yasuo Koide, and Liwen Sang, “Nearly ideal vertical GaN Schottky barrier diodes with ultralow turn-on voltage and on-resistance”, Applied Physics Express, 2017, 10, 51001-51006.
    [79] Jun Xu, , Xue Chen, Zhen-Hua Chen, Wen-Jun Zhang, Shuit-Tong Lee, Weixin Zhang, and Zeheng Yang ,”Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles”, ACS Nano, 2010, 4,1845-1850.
    [80] Vladimir Lesnyak , Rosaria Brescia , Gabriele C. Messina and Liberato Manna ,“Cu vacancies boost cation exchange reactions in copper selenide nanocrystals”, ,Journal of the American Chemical Society, 2015, 137 , 9315-9323.

    無法下載圖示 全文公開日期 2026/02/08 (校內網路)
    全文公開日期 2026/02/08 (校外網路)
    全文公開日期 2026/02/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE