簡易檢索 / 詳目顯示

研究生: 李俊穎
Chun-Ying Li
論文名稱: 雙金屬電解液抑制長循環無陽極鋰金屬電池鋰枝晶沉積
Bimetallic electrolyte system to mitigate Li dendrite growth for long cycling of anode-free Li-metal batteries
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
潘俊仁
Chun-Jern Pan
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 114
中文關鍵詞: 無陽極鋰金屬電池雙金屬系統局部高濃度電解液固態電解液介面游離溶劑
外文關鍵詞: Anode-free lithium metal battery, bimetallic system, localized high-concentration electrolyte, solid-electrolyte interface, free solvent
相關次數: 點閱:293下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著科技的進步與能源需求的增加,生產製作較為簡單且具有高能量密度的無陽極鋰金屬電池被視為能解決能源問題的明日之星,但是相較於技術已成熟穩定的商業用鋰離子電池,無陽極鋰金屬電池仍然有許多問題需解決,如充放電過程中生成鋰枝晶穿透隔離膜造成的電池短路、有限鋰源造成的較低的庫倫效率與不佳的電容維持率導致的低循環壽命等,為了解決上述關於鋰枝晶與有限鋰源等問題,如何高效利用電池中有限鋰源與使其沉積出具有較平整表面的方法變得更加重要,本研究設計了一款使用以LiFSI作為主鹽搭配含鈉離子的鹽類,輔以醚類溶劑DME與稀釋劑TTE為基底配製而成的雙金屬局部高濃度電解液來改善上述常見的無陽極鋰金屬電池的缺點。
    本研究著重探討以鈉鹽做為局部高濃度電解液的添加劑,透過將電解液中部分鈉離子先行還原至銅薄表面提升其與鋰離子的界面親和力,後以in-situ的方式將其餘鈉離子與鋰離子一同還原至銅箔表面,藉由鈉離子較大的離子半徑以及其與鋰離子不同的離子移動速率等特性,抑制無陽極鋰金屬電池中鋰枝晶大量生長的問題,本研究以1.5M LiFSI in DME/TTE(2:3 v/v)局部高濃度作為原始未改質電解液,加入各濃度NaFSI進行鋰鹽與鈉鹽的比例優化,再以不同種類的鈉鹽(NaF、NaBF4、NaPF6、NaTFSI)進行各種陰離子團對電化學影響之比較,最後對電解液中的游離溶劑含量進行調整,以此開發出一款更適合無陽極鋰金屬電池的電解液。
    雖然過程中遇到LiFSI電解液腐蝕正極後鋁箔與鈕扣電池之不鏽鋼元件等問題,但我們藉由將鈕扣電池系統更改為軟包電池成功避免掉大部分腐蝕效應所帶來的影響使實驗得以繼續進行,最後,相較於一般商用電解液1M LiPF6 in EC/DEC(1:1 v/v)與1.5M LiFSI in DME/TTE(1:4 v/v)局部高濃度電解液於在無陽極軟包電池下分別在經過50次與100次充放電循環後僅殘餘5.6 %、62.25%的電容維持率,經優化後的1.45M LiFSI+0.05 M NaTFSI電解液在100次充放電循環後能具有高達73.97%的電容維持率且其沉積的鋰金屬亦具有較緻密且平整的表面。


    Recently, with the development of technology and the increasing energy demand, the simple production process and higher energy density anode-free lithium metal batteries have been considered a promising solution to the energy problem. However, compared to stable commercial lithium-ion batteries, anode-free lithium metal batteries still face numerous challenges. Common issues such as lithium dendrite penetrating the separator cause short circuits, lower Coulombic efficiency, and poor capacity retention, leading to shorter cycle life due to limited lithium resources. To address these common problems related to lithium dendrites and limited lithium resources, it becomes crucial to efficiently utilize the limited lithium to make lithium deposition with a more uniform surface. This study designed a bimetallic localized high-concentration electrolyte system. Using LiFSI as the main salt, combined with sodium-containing salts based on the ether solvent DME and the diluent TTE, to improve the drawbacks of conventional anode-free lithium metal batteries.
    This work uses sodium salts as additives in the localized high-concentration electrolyte. By earlier deposition of partial sodium ions to enhance the interface affinity between lithium ions and copper surface, and then in-situ deposition of both sodium and lithium ions onto the copper foil surface, the study aims to suppress the excessive growth of lithium dendrites in anode-free lithium metal batteries by the different ionic radius and migration rate of sodium ions. The study initially used 1.5M LiFSI in DME/TTE (2:3 v/v) as the original unmodified electrolyte. Various concentrations of sodium salt were subsequently added to optimize the salt-to-solvent ratio. To assess their electrochemical impact, further comparison was conducted using different sodium salts (NaF, NaBF4, NaPF6, NaTFSI). Finally, adjustments were made to the content of free solvents in the electrolyte to develop an electrolyte more suitable for anode-free lithium metal batteries.
    Although we encountered issues such as corrosion of aluminum foils and stainless steel components during the process, the experiment continued by successfully switching the system from a coin cell system to a pouch cell system, which mitigated the detrimental effects of corrosion. Finally, compared to the typical commercial electrolytes of 1M LiPF6 in EC/DEC (1:1 v/v) and 1.5M LiFSI in DME/TTE (1:4 v/v) electrolyte, which showed only 5.6 % and 62.25 % capacity retention, respectively, after 50 and 100 charge-discharge cycles in anode-free pouch cells, the optimized 1.45M LiFSI+0.05M NaTFSI electrolyte achieved high capacity retention of 73.97 % after 100 charge-discharge cycles and show the uniform surface after cycling.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 鋰離子電池的構造與反應機制 2 1.3 無陽極鋰金屬電池 4 1.4 正極材料 6 1.5 負極材料 7 1.6 電解液 8 1.6.1 溶劑 8 1.6.2 鋰鹽 9 2 第二章 文獻回顧 11 2.1 常見鋰鹽及特性 11 2.2 液態金屬簡介 13 2.2.1 液態金屬與遮蔽效應 15 2.2.2 液態金屬與電流收集器改質 20 2.2.3 含鈉SEI 24 2.3 局部高濃度電解液 28 2.4 研究動機與目的 33 2.5 Roadmap 35 第三章 實驗方法與儀器 37 3.1 實驗儀器 37 3.2 實驗藥品與器材 38 3.3 實驗步驟 39 3.3.1 極片製備 39 3.3.2 鈕扣電池 40 3.3.3 軟包電池 42 3.3.4 電解液配製 46 3.4 電化學測試 48 3.4.1 充放電測試 48 3.4.2 交流阻抗分析 49 3.5 儀器原理與分析方式 50 3.5.1 拉曼光譜儀(Raman spectroscopy) 50 3.5.2 接觸角儀器(Contact angle meter) 51 3.5.3 掃描式電子顯微鏡(FE-SEM) 52 3.5.4 X光射線光電子光譜(XPS) 53 3.5.5 落球式黏度計(Viscosity meter) 54 第四章 結果與討論 55 4.1 鈕扣電池篩選鈉鹽配比 55 4.1.1 鈉鹽濃度計算 55 4.1.2 電解液性質測試 56 4.1.3 鋰銅電池測試 57 4.1.4 無陽極電池測試 59 4.1.5 腐蝕現象 61 4.1.6 鈉鹽濃度的影響 62 4.1.7 軟包電池和鈕扣電池的比較與測試 63 4.2 軟包電池測試 64 4.2.1 陰離子團對電解液性質的影響 65 4.2.2 陰離子團對電學化表現之影響 67 4.2.3 電流密度對電化學表現之影響 69 4.2.4 鈉離子與陰離子團於鋰沉積形貌之影響 70 4.2.5 固態電解質界面組成分析 73 4.2.6 游離溶劑於電化學效應之影響 75 4.2.7 鈉離子與游離溶劑對鋰沉積形貌之影響 78 4.2.8 游離溶劑對固態電解質界面之影響 79 4.3 鈉沉積證明 80 4.3.1 SEM/EDS 80 4.3.2 in-situ WAXS 81 4.3.3 ICP 82 4.3.4 XPS 83 4.4 綜合討論 84 第五章結論 87 第六章未來展望 88 參考文獻 90

    1. Ding, Y., et al., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019. 2(1): p. 1-28.
    2. Cheng, X.-B., et al., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 2017. 117(15): p. 10403-10473.
    3. Tian, Y., et al., Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020. 78: p. 105344.
    4. Noh, H.-J., et al., Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013. 233: p. 121-130.
    5. Zaghib, K., et al., Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. Journal of Power Sources, 2012. 219: p. 36-44.
    6. Yamada, A., et al., Olivine-type cathodes: Achievements and problems. Journal of Power Sources, 2003. 119: p. 232-238.
    7. Wu, Z.-S., et al., Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS nano, 2011. 5(7): p. 5463-5471.
    8. Yi, R., et al., Micro‐sized Si‐C composite with interconnected nanoscale building blocks as high‐performance anodes for practical application in lithium‐ion batteries. Advanced Energy Materials, 2013. 3(3): p. 295-300.
    9. Xu, G., et al., Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. Journal of Power Sources, 2015. 276: p. 247-254.
    10. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
    11. Song, J., Y. Wang, and C. Wan, Conductivity study of porous plasticized polymer electrolytes based on poly (vinylidene fluoride) a comparison with polypropylene separators. Journal of The Electrochemical Society, 2000. 147(9): p. 3219.
    12. Hui, C.-y., et al., Flexible energy storage system—an introductory review of textile-based flexible supercapacitors. Processes, 2019. 7(12): p. 922.
    13. Mauger, A., et al., A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. Materials Science and Engineering: R: Reports, 2018. 134: p. 1-21.
    14. Younesi, R., et al., Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S. Energy & Environmental Science, 2015. 8(7): p. 1905-1922.
    15. Aravindan, V., et al., Lithium‐ion conducting electrolyte salts for lithium batteries. Chemistry–A European Journal, 2011. 17(51): p. 14326-14346.
    16. Matsumoto, K., et al., Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. Journal of Power Sources, 2013. 231: p. 234-238.
    17. Gabryelczyk, A., et al., Corrosion of aluminium current collector in lithium-ion batteries: A review. Journal of Energy Storage, 2021. 43: p. 103226.
    18. Zhang, X. and T. Devine, Factors that influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6. Journal of The Electrochemical Society, 2006. 153(9): p. B375.
    19. Ding, Y., X. Guo, and G. Yu, Next-Generation Liquid Metal Batteries Based on the Chemistry of Fusible Alloys. ACS Central Science, 2020. 6(8): p. 1355-1366.
    20. Ding, F., et al., Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society, 2013. 135(11): p. 4450-4456.
    21. Hagos, T.M., et al., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta, 2019. 316: p. 52-59.
    22. Lin, L., et al., Epitaxial induced plating current‐collector lasting lifespan of anode‐free lithium metal battery. Advanced Energy Materials, 2021. 11(9): p. 2003709.
    23. Zheng, X., et al., Solvation and Interfacial Engineering Enable− 40° C Operation of Graphite/NCM Batteries at Energy Density over 270 Wh kg− 1. Advanced Materials, 2023. 35(10): p. 2210115.
    24. Wang, Y., et al., Electroless Formation of a Fluorinated Li/Na Hybrid Interphase for Robust Lithium Anodes. Journal of the American Chemical Society, 2021. 143(7): p. 2829-2837.
    25. Soto, F.A., et al., Tuning the solid electrolyte interphase for selective Li‐and Na‐ion storage in hard carbon. Advanced materials, 2017. 29(18): p. 1606860.
    26. Chandra, A. and B. Bagchi, Ionic contribution to the viscosity of dilute electrolyte solutions: Towards a microscopic theory. The Journal of Chemical Physics, 2000. 113(8): p. 3226-3232.
    27. Yamada, Y. and A. Yamada, Superconcentrated electrolytes for lithium batteries. Journal of The Electrochemical Society, 2015. 162(14): p. A2406.
    28. Tatara, R., et al., Enhanced cycling performance of Ni-rich positive electrodes (NMC) in Li-ion batteries by reducing electrolyte free-solvent activity. ACS applied materials & interfaces, 2019. 11(38): p. 34973-34988.
    29. Seo, D.M., et al., Role of Mixed Solvation and Ion Pairing in the Solution Structure of Lithium Ion Battery Electrolytes. The Journal of Physical Chemistry C, 2015. 119(25): p. 14038-14046.
    30. Perez Beltran, S., et al., Localized high concentration electrolytes for high voltage lithium–metal batteries: correlation between the electrolyte composition and its reductive/oxidative stability. Chemistry of Materials, 2020. 32(14): p. 5973-5984.
    31. Wang, J., et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications, 2016. 7(1): p. 12032.
    32. Tan, S., et al., Engineering and characterization of interphases for Lithium metal anode. Chemical Science, 2021. 13.
    33. Ren, X., et al., Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019. 3(7): p. 1662-1676.
    34. Abraham, K., J. Goldman, and D. Natwig, Characterization of ether electrolytes for rechargeable lithium cells. Journal of the Electrochemical Society, 1982. 129(11): p. 2404.
    35. Hagos, T.M., et al., A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Accounts of Chemical Research, 2021. 54(24): p. 4474-4485.

    QR CODE