簡易檢索 / 詳目顯示

研究生: Niguse Aweke Sahalie
Niguse Aweke Sahalie
論文名稱: 以界面工程改善無陽極鋰電池壽命
Cycle Life of Anode-Free Lithium Metal Battery Improved by Interfacial Engineering Approaches
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 吳溪煌
She-Huang Wu
鄧熙聖
Hsisheng Teng
林律吟
Lu-Yin Lin
王迪彥
Di-Yan Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 224
中文關鍵詞: 鋰金屬電池無陽極硝酸鉀添加劑固液界面膜的形成屏蔽效果三元系陰極庫侖效率氧化鋁/聚丙烯腈潤濕性親鋰性鋰枝晶抑制
外文關鍵詞: Li metal battery, anode free, KNO3 additive, SEI formation, shielding effect, NMC, coulombic efficiency, Al2O3/PAN, wettability; lithophilicity, LAP film, dendrite suppression
相關次數: 點閱:319下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的幾十年中,鋰離子電池(LIB)已經成為替代能源需求的替代品。高能量密度,充放電速率,長循環壽命和低自放電是在不同攜帶式電子設備中使用的LIB的幾個重要特徵。但是,商用LIB仍無法為電動汽車和大型儲能裝置提供足夠的能量。鋰金屬陽極因其高理論電容(3860mAh g-1)、低還原電位(-3.04V vs SHE)和低密度(0.534g cm-3)在最近被受到重視。
    使用無陽極組裝的無陽極鋰金屬電池(AFLMB)可以顯著提高電池的能量密度成本和安全性。因此, AFLMB採用從預置鋰到銅電流收集器的可逆提取鋰的方法。然而,鋰陽極和AFLMB都會遇到不穩定的鋰電鍍/剝離過程。鋰在銅電極上的不均勻沉積會導致枝晶生長、SEI積累、庫侖效率低和循環壽命短。因此,本論文採用幾種方法來解決鋰金屬陽極和AFLMB的障礙。
    第一種方法是基於雙功能電解質添加劑的使用。研究硝酸鉀(KNO3)添加劑對AFLMB全電池(Cu ǁ LiNi1/ 3Mn1 / 3Co1 / 3O2或Cu ǁ NMC)和半電池(Cu ǁ Li)構型的循環壽命和平均庫侖效率(CE)的影響。Cu ǁ NMC電池在有KNO3的情況下, 經過50次循環後的電容保持率(CR)約為40%,對照電解質,1 M LiPF6在碳酸亞乙酯(EC)和碳酸二乙酯(DEC)(1:1 v/v)中,的15個循環後,其電容保持率(CR)為40%。含添加劑的Cu ǁ NMC電池50次循環的平均CE增至96.50%,而無KNO3的35次循環後的平均CE為91.32%。在有無KNO3的60個循環後,Cu ǁ Li電池的平均效率分別為96.20%和85.74%。掃描式電子顯微鏡(SEM)的形態學研究表明, KNO3可使鋰沉積相對平滑。這些結果主要來自(1)PF6–和 NO3–的還原作用增強新的固體-電解質界面組成,以及(2)K+的靜電屏蔽作用。
    第二項工作是在銅電極表面塗布研磨的Al2O3 /聚丙烯腈(PAN)複合層(AOP)的效果。Cu上的AOP層可促進從NMC(333)陰極提取的緻密且平滑的Li沉積,從而延長循環壽命。 AOP層的優異潤濕性和電解質吸收特性促進了均勻的離子通量和相應的電化學動力學。多功能AOP層為SEI層提供了適度的機械支撐,同時還提供了足夠的強度來抑制鋰枝晶的生長。從AOP的底部在負極表面形成Li–Al–O/Al2O3的物質揭示了複合層的親鋰性質,通過調節Li+通量,除了Al–F外,還形成了新的SEI組成。PAN協同作用通過其靈活的結合作用和對鋰通量具有良好親和力的氮的存在來體現。所得的帶有AOP@Cu的電池如AOP@Cu ǁ NMC(333)和AOP@Cu ǁ Li電池改善的循環穩定性和庫侖效率。在0.2 mA cm-2下進行的AOP @Cu ǁ NMC(333)電池具有160 mAh g-1的第一循環放電電容,在82次循環後仍保持30%,而Cu ǁ NMC電池從146.31 mAh g-1的第一循環放電電容經過52次循環後仍保持約30%。
    最後一種方法透過LAP層修飾Cu電極,該層是透過將LiNO3奈米粒子摻入Al2O3/PAN複合材料(AOP)主體中製成的。主體的膜受益於復合組成的協同作用。聚合物(PAN)用作黏合劑和Li+通量調節劑,而復合LAP機械支撐形成的固體-電解質界面(SEI)。LAP複合層可提供更好的潤濕性,還可透過界面孔吸收電解質,從而產生均勻的鋰通量。奈米級摻入的LiNO3一部分釋放到電解質中,並改善了電荷轉移動力學。它還經過還原分解以形成更好的SEI組成,包括Li3N和LiNxOy,從而獲得更好的導電性和更少的極化電池。因此,獲得了無枝晶且平滑的鋰沉積。與相應的對照電池相比,LAP@Cu ǁ Li和LAP@Cu ǁ NMC電池可提供更好的電容保持能力和庫侖效率。LAP@Cu ǁ NMC電池在0.5 mA cm-2下進行,含有10%FEC電解質添加劑,在140次循環後仍保持第一循環放電電容的30%。在250和100次循環後,LAP@Cu ǁ Li電池的平均庫侖效率(CE)分別在0.5 mA cm-2、0.5 mAh cm-2和1 mA cm-2、1 mAh cm-2為98.16%和99.37%。
    大部分情況下,使用電解質添加劑和表面塗層的界面工程方法可以增加AFLMB的循環壽命。由硝酸鹽還原形成良好SEI成分的硝酸鉀電解質添加劑可穩定鋰沉積和剝離的過程。相較於鋰離子相比,還原電位最低的陽離子鉀產生的靜電屏蔽機制進一步穩定了加工並延長了電池的循環壽命。 通過AOP和LAP複合層進行表面塗層還可以提高SEI的強度,增加潤濕性並調節鋰離子沉積。 此外,作為LAP摻入薄膜中的鹽可以穩定釋放到電解質中,所形成SEI效果優於單獨使用硝酸鉀和AOP的方法。


    Over the last decades, the lithium-ion batteries (LIB) have appeared as an alternative to the
    increasing demand of energy source. The high energy density, rate of charge and discharge, reliability, and low self-discharge are some of the important features of LIB to be utilized in different portable electronic devices. However, the commercial LIB cannot still deliver enough energy for electric vehicles and large scale storages. Recently, lithium metal anode got a great attention due to its high theoretical specific capacity (3860 mAh g 1), lowest reduction potential (-3.04 V vs SHE) and lowest density (0.534 g cm-3).
    Utilizing anode free Lithium metal battery (AFLMB) which is assembled without any anode could significantly increases the energy density, cost and safety of a cell. AFLMB is therefore adopts the reversible extraction of lithium (Li) from prelithiated cathode on to Cu current collector. Nevertheless, both lithium anode and AFLMB suffers from unstable lithium plating/stripping process. The uneven Li deposition on copper current collector results in dendrite growth, SEI accumulation, low coulombic efficiency and short cycle life. Therefore, in this thesis, several approaches have been undertaken to solve the hurdles in lithium metal anode and AFLMB.
    The first approach is based on the use of bifunctional electrolyte additive. The effect of potassium nitrate (KNO3) additive to boost the cycling life and average coulombic efficiency (CE) of both AFLMB full cell (CuǁLiNi1/3Mn1/3Co1/3O2 or CuǁNMC) and half cell (CuǁLi) configurations is studied. The CuǁNMC cell possesses a capacity retention (CR) of ~40% after 50 cycles in the presence of KNO3 compared to ~40% after 15 cycles in the control electrolyte, 1 M LiPF6 in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 v/v). The average CE of CuǁNMC cell with additive for 50 cycles increases to 96.50%, whereas it is 91.32% after 35 cycles without KNO3. The average efficiencies of CuǁLi cells are 96.20% and 85.74% after 60 cycles with and without KNO3 respectively. Morphological investigations by Scanning Electron Microscope (SEM) reveal a relatively smooth Li deposition with KNO3. These achievements originate mainly from (1) new solid electrolyte interphase components from the enhanced reductive decompositions of PF6– and NO3– and (2) electrostatic shielding effect of K+.
    The second work is on the effect of milled Al2O3/Polyacrylonitrile (PAN) composite layer (AOP) coated on the surface of Cu current collector. AOP@Cu layer encourages compact and smoother Li+ deposition, extracted from NMC (333) cathode, for better cycle life. The excellent wettability and electrolyte uptaking nature of AOP layer promotes uniform ionic flux and the corresponding electrochemical kinetics. Multifunctional AOP layer offers a moderate mechanical support to the SEI layer, while it also provides sufficient strength to suppress the growth of lithium dendrites. The formation of Li – Al – O/Al2O3 species from the bottom part of AOP at the negative electrode surface reveals the lithiophilic nature of the composite layer to form new SEI components, in addition to Al – F, by regulate Li+ flux. PAN synergism is manifested by its flexible binding role and by the presence of nitrogen that has good affinity to lithium flux. The resulting cell with AOP@Cu possesses improved cycling stability and Coulombic efficiency in AOP@CuǁNMC (333) and AOP@CuǁLi cells. AOP@CuǁNMC (333) cell run at 0.2 mA cm-2 exhibits a first cycle discharge capacity of 160 mAh g-1 which retains 30% after 82 cycles, while CuǁNMC cell retains ~30% after only 52 cycles from the first discharge capacity of 146.31 mAh g-1.
    The last approach involves the modification of Cu current collector by LAP layer which is fabricated by incorporating of LiNO3 into the Al2O3/PAN composite (AOP) host. The host film benefits from the synergetic effect of composite components. The polymer (PAN) acts as a binder and Li+ flux regulator while the composite LAP mechanically supports the as formed solid electrolyte interphase (SEI). LAP composite layer provides better wettability and also electrolyte uptake through interfacial holes that result in uniform Li flux. The incorporated LiNO3 partly released into the electrolyte, and improve the charge transfer kinetics. It also undergoes reductive decomposition to form better SEI components including Li3N and LiNxOy resulting better conductive and less polarized cell. Consequently, dendrite free and smooth lithium deposition was obtained. The LAP@CuǁLi and LAP@CuǁNMC cells deliver far better capacity retention and coulombic efficiencies than the corresponding control cells. The LAP@CuǁNMC cell run at 0.5 mA cm-2 with 10% FEC electrolyte additive retains 30% of the first discharge capacity after 140 cycles. The average coulombic efficiency (CE) of LAP@CuǁLi cell is also 98.16% at 0.5 mA cm-2, 0.5 mAh cm-2 after 250 cycles and 99.37% at 1 mA cm-2, 1mAh cm-2 after 100, cycles respectively.
    Generally, interfacial Engineering approaches by using electrolyte additives and surface coating can enhance the cycle life of AFLMB. KNO3 Electrolyte additives that form good SEI components from nitrate reduction stabilize the plating/stripping process. Electrostatic shielding mechanism by cations, K+, with lowest reduction potential than Li+ further stabilizes the processes and enhance the cycle life of the cell. The effects of surface coating by AOP and LAP composite layer can also mechanically support the SEI, increases the wettability and regulate the Li+ deposition processes. In addition, salts incorporated into the film as LAP could be steadily released into the electrolyte to form SEI components which performs better than KNO3 and AOP approaches done separately.

    摘要 i Abstract v Acknowledgment viii Table of Contents xi List Abbreviations and Units xxiv Chapter 1: Introduction 1 1.1. Backgrounds of energy sources 1 1.2. Batteries as electrochemical energy storage 3 1.3. Lithium secondary battery 4 1.3.1. Cathode materials 6 1.3.2. Anode materials 10 1.3.3. Electrolytes 13 1.3.4. Electrolyte additives and solid electrolyte interphases 17 1.3.5. Separator 19 1.3.6. Interfacial Engineering 21 1.4. Anode-free lithium metal battery 22 Chapter 2: Understanding and improving the cyclability of lithium metal anode and anode-free battery 25 2.1. Lithium metal as anode 25 2.2. Conventional challenges in lithium metal anode 26 2.2.1. Dendrite growth and its consequences 27 2.3. Approaches to enhance the cycle life of lithium metal anode 32 2.3.1. Electrolyte Engineering 33 2.3.2. Electrolyte additives 37 2.3.3. Solid electrolytes 40 2.3.4. Surface Engineering 44 2.3.5. Separator Engineering 50 2.3.6. Controlling the charge-discharge parameters 51 2.4. The progress of anode free lithium metal battery 53 2.5. Motivation and objectives of the study 57 2.5.1. Motivation 57 2.5.2. Objectives 58 Chapter 3: Materials and experimental methods 59 3.1. Chemicals and reagents 59 3.2. Experimental section 60 3.2.1. Preparation of KNO3 containing electrolyte 60 3.2.2. Electrolyte characterization 60 3.2.3. Electrode preparation 61 3.2.4. Fabrication of AOP coated Cu (AOP@Cu) 61 3.2.5. Characterization of AOP layer 63 3.2.6. Fabrication of LiNO3/Al2O3/PAN coated Cu (LAP@Cu) 63 3.2.7. Characterization of LAP layer 65 3.2.8. Electrochemical measurements 65 3.2.9. Physicochemical characterization of SEI 66 Chapter 4: Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte 67 4.1. Introduction 67 4.2. Results and discussion 70 4.2.1. Electrolyte and electrode preparation 70 4.2.2. Morphology of Li electrodeposited onto Cu 71 4.2.3. Electrochemical cycling stability 74 4.2.4. Analysis of surface chemistry 83 4.3. Summary 90 Chapter 5: Multifunctional properties of Al2O3/polyacrylonitrile composite coating on Cu to suppress dendritic growth in anode free Li-metal battery 93 5.1. Introduction 93 5.2. Results and discussions 97 5.2.1. AOP@Cu preparation and characterization 97 5.2.2. Morphology of deposited Li metal 100 5.2.3. Electrochemical performance 105 5.3. Summary 117 Chapter 6: Manipulating solid electrolyte interphase through selective reduction of nano-dispersed salt in ceramic artificial layer for anode free lithium metal battery 119 6.1. Introduction 119 6.2. Results and discussion 122 6.2.1. Fabrication of LiNO3/Al2O3/PAN coated Cu (LAP@Cu) 122 6.2.2. The effect of LAP on Li growth morphology 124 6.2.3. Electrochemical performances 126 6.3. Summary 139 Chapter 7 Conclusion and future perspectives 143 7.1. Conclusion 143 7.2. Future perspectives 145 Appendixes 191 Approach I 191 Approach II 192 Approach III 194

    [1] V. Belessiotis, E. Delyannis, The history of renewable energies for water desalination, Desalination 128(2) (2000) 147-159.
    [2] P. Homewood, BP Energy Review 2018. <https://notalotofpeopleknowthat.wordpress.com/2019/06/14/bp-energy-review-2018/>, accessed on June 14, 2019).
    [3] C. Zou, Q. Zhao, G. Zhang, B. Xiong, Energy revolution: From a fossil energy era to a new energy era, Natural Gas Industry B 3(1) (2016) 1-11.
    [4] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews 15(3) (2011) 1513-1524.
    [5] N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies, Futures 69 (2015) 31-49.
    [6] M. Armand, J.-M. Tarascon, Building better batteries, nature 451(7179) (2008) 652.
    [7] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334(6058) (2011) 928-935.
    [8] M. Dürr, A. Cruden, S. Gair, J. McDonald, Dynamic model of a lead acid battery for use in a domestic fuel cell system, Journal of power Sources 161(2) (2006) 1400-1411.
    [9] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific2011, pp. 171-179.
    [10] C. Julien, A. Mauger, A. Vijh, K. Zaghib, Lithium batteries, Lithium Batteries, Springer2016, pp. 29-68.
    [11] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science 7(2) (2014) 513-537.
    [12] J.B. Goodenough, K. Mizushima, Fast ion conductors, Google Patents, 1982. United States Patent No. US 4,357,215.
    [13] A. Patil, V. Patil, D.W. Shin, J.-W. Choi, D.-S. Paik, S.-J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Materials research bulletin 43(8-9) (2008) 1913-1942.
    [14] G.-L. Xu, Q. Wang, J.-C. Fang, Y.-F. Xu, J.-T. Li, L. Huang, S.-G. Sun, Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries, Journal of Materials Chemistry A 2(47) (2014) 19941-19962.
    [15] A.S. Hameed, Phosphate based cathodes and reduced graphene oxide composite anodes for energy storage applications, Springer Singapore, 2016. Qatar University, Doha, Qatar. SIBN: 978-981-10-9587-0
    [16] M. Devaraju, M. Sathish, I. Honma, Advanced Energy Devices: Lithium Ion Battery and High Energy Capacitor, Handbook of Sustainable Engineering (2013) 1149-1173.
    [17] G.-H. Kim, A. Pesaran, R. Spotnitz, A three-dimensional thermal abuse model for lithium-ion cells, Journal of Power Sources 170(2) (2007) 476-489.
    [18] R. Chen, T. Zhao, X. Zhang, L. Li, F. Wu, Advanced cathode materials for lithium-ion batteries using nanoarchitectonics, Nanoscale Horizons 1(6) (2016) 423-444.
    [19] N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, Journal of Power Sources 119 (2003) 171-174.
    [20] K. Shaju, G.S. Rao, B. Chowdari, Performance of layered Li (Ni1/3Co1/3Mn1/3) O2 as cathode for Li-ion batteries, Electrochimica Acta 48(2) (2002) 145-151.
    [21] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials today 18(5) (2015) 252-264.
    [22] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries, Materials Science and Engineering: R: Reports 73(5-6) (2012) 51-65.
    [23] A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific 2011, pp. 148-159.
    [24] G.G. Amatucci, N. Pereira, T. Zheng, J.-M. Tarascon, Failure Mechanism and Improvement of the Elevated Temperature Cycling of LiMn2O4 Compounds Through the Use of the LiAlx Mn2− xO4− z Fz Solid Solution, Journal of The Electrochemical Society 148(2) (2001) A171-A182.
    [25] F.F. Bazito, R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials, Journal of the Brazilian Chemical Society 17(4) (2006) 627-642.
    [26] G.-N. Zhu, Y.-G. Wang, Y.-Y. Xia, Ti-based compounds as anode materials for Li-ion batteries, Energy & Environmental Science 5(5) (2012) 6652-6667.
    [27] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries, Electrochemical Energy Reviews 1(1) (2018) 35-53.
    [28] R. Yazami, D. Guerard, Some aspects on the preparation, structure and physical and electrochemical properties of LixC6, Journal of power sources 43(1-3) (1993) 39-46.
    [29] E. Buiel, J. Dahn, Li-insertion in hard carbon anode materials for Li-ion batteries, Electrochimica acta 45(1-2) (1999) 121-130.
    [30] Y.-P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries, Journal of Power Sources 114(2) (2003) 228-236.
    [31] M. Ashuri, Q. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale 8(1) (2016) 74-103.
    [32] G.G. Eshetu, E. Figgemeier, Confronting the Challenges of Next‐Generation Silicon Anode‐Based Lithium‐Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders, ChemSusChem 12(12) (2019) 2515-2539.
    [33] M. Wang, F. Zhang, C.S. Lee, Y. Tang, Low‐Cost Metallic Anode Materials for High Performance Rechargeable Batteries, Advanced Energy Materials 7(23) (2017) 1700536.
    [34] M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chemical reviews 113(7) (2013) 5364-5457.
    [35] Z. Moorhead-Rosenberg, Magnetic, electronic, and electrochemical properties of high-voltage spinel cathodes for lithium-ion batteries. Department of Materials Science and Engineering, the Univesrity of Texas at Austin, Texas, USA, May 2015. http://hdl.handle.net/2152/31329
    [36] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, Journal of power sources 195(9) (2010) 2419-2430.
    [37] T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, H.-B. Qiao, Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, Journal of Physics and Chemistry of Solids 71(9) (2010) 1236-1242.
    [38] H. Xia, Z. Luo, J. Xie, Nanostructured lithium titanate and lithium titanate/carbon nanocomposite as anode materials for advanced lithium-ion batteries, Nanotechnology Reviews 3(2) (2014) 161-175.
    [39] R. Zhang, X. Chen, X. Shen, X.-Q. Zhang, X.-R. Chen, X.-B. Cheng, C. Yan, C.-Z. Zhao, Q. Zhang, Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries, Joule 2(4) (2018) 764-777.
    [40] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology 12(3) (2017) 194.
    [41] Q.C. Liu, J.J. Xu, S. Yuan, Z.W. Chang, D. Xu, Y.B. Yin, L. Li, H.X. Zhong, Y.S. Jiang, J.M. Yan, Artificial protection film on lithium metal anode toward long‐cycle‐life lithium–oxygen batteries, Advanced Materials 27(35) (2015) 5241-5247.
    [42] Y. Chen, Y. Luo, H. Zhang, C. Qu, H. Zhang, X. Li, The Challenge of Lithium Metal Anodes for Practical Applications, Small Methods (2019) 1800551.
    [43] B.S. Parimalam, B.L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, Journal of The Electrochemical Society 165(2) (2018) A251-A255.
    [44] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.-C. Möller, J. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, Journal of power sources 147(1-2) (2005) 269-281.
    [45] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S, Energy & Environmental Science 8(7) (2015) 1905-1922.
    [46] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical reviews 104(10) (2004) 4303-4418.
    [47] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chemical reviews 114(23) (2014) 11503-11618.
    [48] J. Scheers, New anions for lithium battery electrolytes, Chalmers University of Technology. Thesis For The Degree Of Doctor In Philosophy. 2011.
    [49] J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium‐ion batteries: state of the art and perspectives, ChemSusChem 8(13) (2015) 2154-2175.
    [50] G. Yan, X. Li, Z. Wang, H. Guo, W. Peng, Q. Hu, J. Wang, Fluorinated solvents for high-voltage electrolyte in lithium-ion battery, Journal of Solid State Electrochemistry 21(6) (2017) 1589-1597.
    [51] P. Zeng, Y. Han, X. Duan, G. Jia, L. Huang, Y. Chen, A stable graphite electrode in superconcentrated LiTFSI-DME/DOL electrolyte and its application in lithium-sulfur full battery, Materials Research Bulletin 95 (2017) 61-70.
    [52] Y. Yang, D.M. Davies, Y. Yin, O. Borodin, J.Z. Lee, C. Fang, M. Olguin, Y. Zhang, E.S. Sablina, X. Wang, High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes, Joule 3(8) (2019) 1986-2000.
    [53] A. Chagnes, J. Swiatowska, Lithium process chemistry: Resources, extraction, batteries, and recycling, Elsevier, 2015. PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Paris, France. ISBN: 9780128016862.
    [54] E. Logan, E.M. Tonita, K. Gering, J. Li, X. Ma, L. Beaulieu, J. Dahn, A study of the physical properties of Li-ion battery electrolytes containing esters, Journal of The Electrochemical Society 165(2) (2018) A21-A30.
    [55] B. Flamme, G.R. Garcia, M. Weil, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidal, A. Chagnes, Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties, Green Chemistry 19(8) (2017) 1828-1849.
    [56] L. Ma, L. Ellis, S. Glazier, X. Ma, J. Dahn, Combinations of LiPO2F2 and Other Electrolyte Additives in Li [Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells, Journal of The Electrochemical Society 165(9) (2018) A1718-A1724.
    [57] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science 9(6) (2016) 1955-1988.
    [58] X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, Q. Zhang, A review of solid electrolyte interphases on lithium metal anode, Advanced Science 3(3) (2016) 1500213.
    [59] P. Ganesh, P. Kent, D.-e. Jiang, Solid–electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes: Insights from first-principles molecular dynamics, The Journal of Physical Chemistry C 116(46) (2012) 24476-24481.
    [60] I.A. Profatilova, S.-S. Kim, N.-S. Choi, Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate, Electrochimica Acta 54(19) (2009) 4445-4450.
    [61] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta 47(9) (2002) 1423-1439.
    [62] X. Feng, X. Ai, H. Yang, Possible use of methylbenzenes as electrolyte additives for improving the overcharge tolerances of Li-ion batteries, Journal of applied electrochemistry 34(12) (2004) 1199-1203.
    [63] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources 162(2) (2006) 1379-1394.
    [64] T. Yim, S.-G. Woo, S.H. Lim, W. Cho, J.H. Song, Y.-K. Han, Y.-J. Kim, 5V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive, Journal of Materials Chemistry A 3(11) (2015) 6157-6167.
    [65] P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception, Energy & Environmental Science 11(9) (2018) 2306-2309.
    [66] R.S. Bladwin, A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions, National Aeronautics and Space Administration, Glenn Research Center 7115 standard drive (2009). http://gltrs.grc.nasa.gov
    [67] S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries, Journal of power sources 164(1) (2007) 351-364.
    [68] P. Arora, Z. Zhang, Battery separators, Chemical reviews 104(10) (2004) 4419-4462.
    [69] Z. Chen, Y. Qin, K. Amine, Y.-K. Sun, Role of surface coating on cathode materials for lithium-ion batteries, Journal of Materials Chemistry 20(36) (2010) 7606-7612.
    [70] N.-L. Wu, Y.-T. Weng, F.-S. Li, N.-H. Yang, C.-L. Kuo, D.-S. Li, Polymeric artificial solid/electrolyte interphases for Li-ion batteries, Progress in Natural Science: Materials International 25(6) (2015) 563-571.
    [71] M.E. Spahr, T. Palladino, H. Wilhelm, A. Würsig, D. Goers, H. Buqa, M. Holzapfel, P. Novák, Exfoliation of graphite during electrochemical lithium insertion in ethylene carbonate-containing electrolytes, Journal of The Electrochemical Society 151(9) (2004) A1383-A1395.
    [72] X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J.-G. Zhang, J. Liu, Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes, Nature communications 5 (2014) 4105.
    [73] H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control, Nature nanotechnology 7(5) (2012) 310.
    [74] J.-G. Zhang, W. Xu, W.A. Henderson, Lithium metal anodes and rechargeable lithium metal batteries, (2017).
    [75] J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Pathways for practical high-energy long-cycling lithium metal batteries, Nature Energy (2019) 1.
    [76] Y.-J. Kim, H. Noh, J. Lee, S. Yuk, H. Jin, H.-T. Kim, Facet Selectivity of Li deposition on Cu Current Collector for Anode-free Lithium Metal Batteries, The 19th International Meeting on Lithium Batteries, IMLB LLC, The Electrochemical Society of Japan (ECSJ), 2018.
    [77] M.S. Kim, J.-H. Ryu, Y.R. Lim, I.W. Nah, K.-R. Lee, L.A. Archer, W.I. Cho, Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries, Nature Energy 3(10) (2018) 889.
    [78] X.-Y. Yue, W.-W. Wang, Q.-C. Wang, J.-K. Meng, Z.-Q. Zhang, X.-J. Wu, X.-Q. Yang, Y.-N. Zhou, CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries, Energy Storage Materials 14 (2018) 335-344.
    [79] X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao, J.Q. Huang, Q. Zhang, Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries, Advanced Materials 28(15) (2016) 2888-2895.
    [80] W. Zhang, H.L. Zhuang, L. Fan, L. Gao, Y. Lu, A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries, Science Advances 4(2) (2018) 4410.
    [81] A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chemical Society Reviews 47(3) (2018) 736-851.
    [82] A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal, Nano letters 17(2) (2017) 1132-1139.
    [83] K. Liu, A. Pei, H.R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C. Liu, P.-c. Hsu, Z. Bao, Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer, Journal of the American Chemical Society 139(13) (2017) 4815-4820.
    [84] S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries, Journal of Power Sources 51(1-2) (1994) 79 -104.
    [85] C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode, Trends in Chemistry. (1)2 (2019) 152 - 157.
    [86] E.E. Evarts, To the limits of lithium, Nature 526(7575) (2015) 93.
    [87] X. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan, J.B. Goodenough, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nature communications 10(1) (2019) 900.
    [88] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review, Chemical reviews 117(15) (2017) 10403-10473.
    [89] B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, J. Xiao, The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries, Energy & Environmental Science 11(7) (2018) 1803-1810.
    [90] B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries, Joule 2(5) (2018) 833-845.
    [91] C. Li, Q. Lan, Y. Yang, H. Shao, H. Zhan, Flexible Artificial Solid Electrolyte Interphase Formed by 1, 3-Dioxolane Oxidation and Polymerization for Metallic Lithium Anodes, ACS applied materials & interfaces 11(2) (2018) 2479-2489.
    [92] S. Li, J. Yang, Y. Lu, Lithium Metal Anode, Encyclopedia of Inorganic and Bioinorganic Chemistry. (2011) 1 - 21.
    [93] X. Shen, H. Liu, X.-B. Cheng, C. Yan, J.-Q. Huang, Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes, Energy Storage Materials (2018), 12, 161-175.
    [94] D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes, Advanced Energy Materials 5(3) (2015) 1400993.
    [95] X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Advanced Functional Materials 27(10) (2017) 1605989.
    [96] L. Beaulieu, K. Eberman, R. Turner, L. Krause, J. Dahn, Colossal reversible volume changes in lithium alloys, Electrochemical and Solid-State Letters 4(9) (2001) A137-A140.
    [97] C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nature chemistry 5(12) (2013) 1042.
    [98] C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, Journal of The Electrochemical Society 152(2) (2005) 396-404.
    [99] J.-N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits, Physical review A 42(12) (1990) 7355.
    [100] L. Li, S. Li, Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries, Chemical communications 54(50) (2018) 6648-6661.
    [101] V. Fleury, J.-N. Chazalviel, M. Rosso, Theory and experimental evidence of electroconvection around electrochemical deposits, Physical review letters 68(16) (1992) 2492.
    [102] F. Wu, Y.-X. Yuan, X.-B. Cheng, Y. Bai, Y. Li, C. Wu, Q. Zhang, Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes, Energy Storage Materials 15 (2018) 148-170.
    [103] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of vinylene carbonate derived SEI layers on graphite anode, Journal of The Electrochemical Society 151(10) (2004) A1659-A1669.
    [104] H.-H. Sun, A. Dolocan, J.A. Weeks, R. Rodriguez, A. Heller, C.B. Mullins, In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery, Journal of Materials Chemistry A 7(30) (2019) 17782-17789.
    [105] G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S.H. Kim, D. Wang, Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries, Nature communications 8(1) (2017) 850.
    [106] K. Leung, F. Soto, K. Hankins, P.B. Balbuena, K.L. Harrison, Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces, The Journal of Physical Chemistry C 120(12) (2016) 6302-6313.
    [107] R.L. Sacci, J.M. Black, N. Balke, N.J. Dudney, K.L. More, R.R. Unocic, Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters, Nano letters 15(3) (2015) 2011-2018.
    [108] T. Jaumann, J. Balach, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Role of 1, 3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries, Journal of The Electrochemical Society 163(3) (2016) 557-564.
    [109] F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi, L. Wang, X.-D. Zhang, Y. Zheng, J.-J. Zhou, L. Li, Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries, Science advances 4(10) (2018) 5383.
    [110] D. Aurbach, Review of selected electrode – solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources 89(2) (2000) 206-218.
    [111] Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Fluorinated electrolytes for 5 V lithium-ion battery chemistry, Energy & Environmental Science 6(6) (2013) 1806-1810.
    [112] L. Hu, Z. Zhang, K. Amine, Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0. 5Mn1. 5O4/graphite couple, Electrochemistry communications 35 (2013) 76-79.
    [113] Z. Chen, J. Zhou, Y. Guo, C. Liang, J. Yang, J. Wang, Y. Nuli, A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery, Electrochimica Acta 282 (2018) 555-562.
    [114] X. Wang, H. Lee, H. Li, X. Yang, X. Huang, The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries, Electrochemistry Communications 12(3) (2010) 386-389.
    [115] X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nature nanotechnology 13(8) (2018) 715.
    [116] L. Suo, W. Xue, M. Gobet, S.G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries, Proceedings of the National Academy of Sciences 115(6) (2018) 1156-1161.
    [117] X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Science advances 4(12) (2018) eaau9245.
    [118] G.E. Blomgren, Electrolytes for advanced batteries, Journal of Power Sources 81 (1999) 112-118.
    [119] S.S. Zhang, K. Xu, T.R. Jow, Study of LiBF4 as an electrolyte salt for a Li-ion battery, Journal of The Electrochemical Society 149(5) (2002) A586-A590.
    [120] H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties, Journal of Power Sources 196(7) (2011) 3623-3632.
    [121] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, High rate and stable cycling of lithium metal anode, Nature communications 6 (2015) 6362.
    [122] J. Yu, G. Na, P.J. Xin, M.N. Ni, X.K. Yu, S. Chao, F. Zhao, L.X. Yan, Concentrated LiODFB electrolyte for lithium metal batteries, Frontiers in chemistry 7 (2019) 494.
    [123] W. Dai, N. Dong, Y. Xia, S. Chen, H. Luo, Y. Liu, Z. Liu, Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries, Electrochimica Acta 320 (2019) 134633.
    [124] X. Chen, W. Xu, M.H. Engelhard, J. Zheng, Y. Zhang, F. Ding, J. Qian, J.-G. Zhang, Mixed salts of LiTFSI and LiBOB for stable LiFePO 4-based batteries at elevated temperatures, Journal of Materials Chemistry A 2(7) (2014) 2346-2352.
    [125] S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, Stable cycling of high-voltage lithium metal batteries in ether electrolytes, Nature Energy 3(9) (2018) 739.
    [126] J. Hu, G. Long, S. Liu, G. Li, X. Gao, A LiFSI–LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li–S battery, Chemical Communications 50(93) (2014) 14647-14650.
    [127] J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y.S. Meng, Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes, Energy & Environmental Science 12(2) (2019) 780-794.
    [128] H. Xiang, H. Xu, Z. Wang, C. Chen, Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes, Journal of Power Sources 173(1) (2007) 562-564.
    [129] Y.E. Hyung, D.R. Vissers, K. Amine, Flame-retardant additives for lithium-ion batteries, Journal of Power Sources 119 (2003) 383-387.
    [130] J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Fire-extinguishing organic electrolytes for safe batteries, Nature Energy 3(1) (2018) 22.
    [131] T.D. Bogart, A.M. Chockla, B.A. Korgel, High capacity lithium ion battery anodes of silicon and germanium, Current Opinion in Chemical Engineering 2(3) (2013) 286-293.
    [132] E. Markevich, G. Salitra, D. Aurbach, Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries, ACS Energy Letters 2(6) (2017) 1337-1345.
    [133] H. Shin, J. Park, A.M. Sastry, W. Lu, Effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures, Journal of The Electrochemical Society 162(9) (2015) A1683-A1692.
    [134] T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch, A. Michaelis, V. Teltevskij, D. Mikhailova, S. Oswald, M. Klose, Lifetime vs. rate capability: understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes, Energy Storage Materials 6 (2017) 26-35.
    [135] J.-Y. Eom, I.-H. Jung, J.-H. Lee, Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries, Journal of Power Sources 196(22) (2011) 9810-9814.
    [136] J. Guo, Z. Wen, M. Wu, J. Jin, Y. Liu, Vinylene carbonate – LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode, Electrochemistry Communications 51 (2015) 59-63.
    [137] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nature communications 6 (2015) 7436.
    [138] J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang, W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nature Energy 2(3) (2017) 17012.
    [139] J. Zheng, J.A. Lochala, A. Kwok, Z.D. Deng, J. Xiao, Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications, Advanced Science 4(8) (2017) 1700032.
    [140] M. Shimizu, M. Umeki, S. Arai, Suppressing the effect of lithium dendritic growth by the addition of magnesium bis (trifluoromethanesulfonyl) amide, Physical Chemistry Chemical Physics 20(2) (2018) 1127-1133.
    [141] F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, Journal of the American Chemical Society 135(11) (2013) 4450-4456.
    [142] X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives, ACS Energy Letters 3(1) (2017) 14-19.
    [143] F. Chu, J. Hu, J. Tian, X. Zhou, Z. Li, C. Li, In situ plating of porous Mg network layer to reinforce anode dendrite suppression in Li-metal batteries, ACS applied materials & interfaces 10(15) (2018) 12678-12689.
    [144] M. Ishikawa, H. Kawasaki, N. Yoshimoto, M. Morita, Pretreatment of Li metal anode with electrolyte additive for enhancing Li cycleability, Journal of power sources 146(1-2) (2005) 199-203.
    [145] S. Choudhury, Z. Tu, S. Stalin, D. Vu, K. Fawole, D. Gunceler, R. Sundararaman, L.A. Archer, Electroless formation of hybrid lithium anodes for fast interfacial ion transport, Angewandte Chemie International Edition 56(42) (2017) 13070-13077.
    [146] F. Ding, W. Xu, X. Chen, J. Zhang, Y. Shao, M.H. Engelhard, Y. Zhang, T.A. Blake, G.L. Graff, X. Liu, Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism, The Journal of Physical Chemistry C 118(8) (2014) 4043-4049.
    [147] W. Jia, C. Fan, L. Wang, Q. Wang, M. Zhao, A. Zhou, J. Li, Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery, ACS applied materials & interfaces 8(24) (2016) 15399-15405.
    [148] W. Gorecki, R. Andreani, C. Berthier, M. Armand, M. Mali, J. Roos, D. Brinkmann, NMR, DSC, and conductivity study of a poly (ethylene oxide) complex electrolyte: PEO (LiClO4)x, Solid State Ionics 18 (1986) 295-299.
    [149] B. Kumar, J.D. Schaffer, M. Nookala, L.G. Scanlon Jr, An electrochemical study of PEO: LiBF4− glass composite electrolytes, Journal of power sources 47(1-2) (1994) 63-78.
    [150] W. Gorecki, M. Jeannin, E. Belorizky, C. Roux, M. Armand, Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes, Journal of Physics: Condensed Matter 7(34) (1995) 6823.
    [151] Y. Liu, J. Lee, L. Hong, Functionalized SiO2 in poly (ethylene oxide)-based polymer electrolytes, Journal of Power Sources 109(2) (2002) 507-514.
    [152] K. Vignarooban, M. Dissanayake, I. Albinsson, B.-E. Mellander, Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes, Solid State Ionics 266 (2014) 25-28.
    [153] J. Weston, B. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes, Solid State Ionics 7(1) (1982) 75-79.
    [154] H. Shen, E. Yi, L. Cheng, M. Amores, G. Chen, S.W. Sofie, M.M. Doeff, Solid-state electrolyte considerations for electric vehicle batteries, Sustainable Energy & Fuels. 3 (2019) 1647-1659
    [155] S.-H. Wang, Y.-Y. Lin, C.-Y. Teng, Y.-M. Chen, P.-L. Kuo, Y.-L. Lee, C.-T. Hsieh, H. Teng, Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries, ACS applied materials & interfaces 8(23) (2016) 14776-14787.
    [156] H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge, T. Xu, X. Guo, X. Sun, Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries, Energy Storage Materials 18 (2019) 59-67.
    [157] Q. Pan, D.M. Smith, H. Qi, S. Wang, C.Y. Li, Hybrid electrolytes with controlled network structures for lithium metal batteries, Advanced Materials 27(39) (2015) 5995-6001.
    [158] F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries, Journal of Power Sources 389 (2018) 198-213.
    [159] Y. Deng, C. Eames, B. Fleutot, R.n. David, J.-N.l. Chotard, E. Suard, C. Masquelier, M.S. Islam, Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect, ACS applied materials & interfaces 9(8) (2017) 7050-7058.
    [160] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12, Angewandte Chemie International Edition 46(41) (2007) 7778-7781.
    [161] S. Stramare, V. Thangadurai, W. Weppner, Lithium lanthanum titanates: a review, Chemistry of materials 15(21) (2003) 3974-3990.
    [162] A.C. Kozen, A.J. Pearse, C.-F. Lin, M. Noked, G.W. Rubloff, Atomic layer deposition of the solid electrolyte LiPON, Chemistry of Materials 27(15) (2015) 5324-5331.
    [163] U. Alpen, Li3N: A promising Li ionic conductor, Journal of Solid State Chemistry 29(3) (1979) 379-392.
    [164] Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy & Environmental Science 7(2) (2014) 627-631.
    [165] R.P. Rao, S. Adams, Studies of lithium argyrodite solid electrolytes for all‐solid‐state batteries, physica status solidi (a) 208(8) (2011) 1804-1807.
    [166] T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries, Nature materials (18)12 (2019) 1278-1291
    [167] S.D. Lee, K.N. Jung, H. Kim, H.S. Shin, S.W. Song, M.S. Park, J.W. Lee, Composite Electrolyte for All‐Solid‐State Lithium Batteries: Low‐Temperature Fabrication and Conductivity Enhancement, ChemSusChem 10(10) (2017) 2175-2181.
    [168] W. Luo, Y. Gong, Y. Zhu, K.K. Fu, J. Dai, S.D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte, Journal of the American Chemical Society 138(37) (2016) 12258-12262.
    [169] K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proceedings of the National Academy of Sciences 113(26) (2016) 7094-7099.
    [170] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries, Advanced materials 30(17) (2018) 1705702.
    [171] W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.F. Lin, Y. Mo, Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer, Advanced Materials 29(22) (2017) 1606042.
    [172] R. Murugan, S. Ramakumar, N. Janani, High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet, Electrochemistry Communications 13(12) (2011) 1373-1375.
    [173] X. Tong, V. Thangadurai, E.D. Wachsman, Highly conductive Li garnets by a multielement doping strategy, Inorganic chemistry 54(7) (2015) 3600-3607.
    [174] Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li‐metal composite anode for stable lithium‐metal batteries, Advanced Functional Materials 27(18) (2017) 1606422.
    [175] C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nature communications 6 (2015) 8058.
    [176] P. Zou, Y. Wang, S.-W. Chiang, X. Wang, F. Kang, C. Yang, Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries, Nature communications 9(1) (2018) 464.
    [177] H. Zhao, D. Lei, Y.B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q.H. Yang, F. Kang, Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendrite‐Free Lithium Metal Anode Current Collector, Advanced Energy Materials 8(19) (2018) 1800266.
    [178] Y. Shi, Z. Wang, H. Gao, J. Niu, W. Ma, J. Qin, Z. Peng, Z. Zhang, A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries, Journal of Materials Chemistry A 7(3) (2019) 1092-1098.
    [179] Z. Luo, J. Xu, B. Yuan, R. Hu, L. Yang, Y. Gao, M. Zhu, 3D Hierarchical Porous Cu-Based Composite Current Collector with Enhanced Ligaments for Notably Improved Cycle Stability of Sn Anode in Li-Ion Batteries, ACS applied materials & interfaces 10(26) (2018) 22050-22058.
    [180] B. Breitung, N. Aguiló-Aguayo, T. Bechtold, H. Hahn, J. Janek, T. Brezesinski, Embroidered copper microwire current collector for improved cycling performance of silicon anodes in lithium-ion batteries, Scientific reports 7(1) (2017) 13010.
    [181] L.-L. Lu, J. Ge, J.-N. Yang, S.-M. Chen, H.-B. Yao, F. Zhou, S.-H. Yu, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano letters 16(7) (2016) 4431-4437.
    [182] K. Yan, B. Sun, P. Munroe, G. Wang, Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes, Energy Storage Materials 11 (2018) 127-133.
    [183] K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang, S. Fan, Super‐aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries, Advanced Functional Materials 23(7) (2013) 846-853.
    [184] J. Jin, Z.-q. Shi, C.-y. Wang, Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries, Electrochimica Acta 141 (2014) 302-310.
    [185] S.S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Prestoring lithium into stable 3D nickel foam host as dendrite‐free lithium metal anode, Advanced Functional Materials 27(24) (2017) 1700348.
    [186] S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, Lithiophilic Cu‐CuO‐Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes, Advanced Materials 30(9) (2018) 1705830.
    [187] J. Pu, J. Li, K. Zhang, T. Zhang, C. Li, H. Ma, J. Zhu, P.V. Braun, J. Lu, H. Zhang, Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits, Nature communications 10(1) (2019) 1896.
    [188] N. Phattharasupakun, J. Wutthiprom, S. Duangdangchote, M. Sawangphruk, A 3D free-standing lithiophilic silver nanowire aerogel for lithium metal batteries without lithium dendrites and volume expansion: in operando X-ray diffraction, Chemical Communications 55(40) (2019) 5689-5692.
    [189] S. Li, Y. Ma, J. Ren, H. Liu, K. Zhang, Y. Zhang, X. Tang, W. Wu, C. Sun, B. Wei, Integrated, Flexible Lithium Metal Battery with Improved Mechanical and Electrochemical Cycling Stability, ACS Applied Energy Materials 2(5) (2019) 3642-3650.
    [190] S. Qu, W. Jia, Y. Wang, C. Li, Z. Yao, K. Li, Y. Liu, W. Zou, F. Zhou, Z. Wang, Air-stable lithium metal anode with sputtered aluminum coating layer for improved performance, Electrochimica Acta 317 (2019) 120-127.
    [191] K. Huang, Z. Li, Q. Xu, H. Liu, H. Li, Y. Wang, Lithiophilic CuO Nanoflowers on Ti‐Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium‐Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life, Advanced Energy Materials (2019) 1900853.
    [192] Q. Chen, Y. Yang, H. Zheng, Q. Xie, X. Yan, Y. Ma, L. Wang, D.-L. Peng, Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes, Journal of Materials Chemistry A 7(19) (2019) 11683-11689.
    [193] Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nature communications 7 (2016) 10992.
    [194] J.H. Um, M. Choi, H. Park, Y.-H. Cho, D.C. Dunand, H. Choe, Y.-E. Sung, 3D macroporous electrode and high-performance in lithium-ion batteries using SnO 2 coated on Cu foam, Scientific reports 6 (2016) 18626.
    [195] J. Zhu, J. Chen, Y. Luo, S. Sun, L. Qin, H. Xu, P. Zhang, W. Zhang, W. Tian, Z. Sun, Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode, Energy Storage Materials 23 (2019) 539-546.
    [196] T. Wang, P. Zhai, D. Legut, L. Wang, X. Liu, B. Li, C. Dong, Y. Fan, Y. Gong, Q. Zhang, S‐Doped Graphene‐Regional Nucleation Mechanism for Dendrite‐Free Lithium Metal Anodes, Advanced Energy Materials (2019) 1804000.
    [197] Q. Dong, B. Hong, H. Fan, C. Gao, S. Hong, Y. Lai, Electron-rich functional doping carbon host as dendrite-free lithium metal anode, Electrochimica Acta 284 (2018) 376-381.
    [198] R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan, Q. Zhang, Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes, Angewandte Chemie International Edition 56(27) (2017) 7764-7768.
    [199] J. Lang, J. Song, L. Qi, Y. Luo, X. Luo, H. Wu, Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode, ACS applied materials & interfaces 9(12) (2017) 10360-10365.
    [200] Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, H. Yao, P.-C. Hsu, S. Chu, Y. Cui, Polymer nanofiber-guided uniform lithium deposition for battery electrodes, Nano letters 15(5) (2015) 2910-2916.
    [201] B.-Q. Li, X.-R. Chen, X. Chen, C.-X. Zhao, R. Zhang, X.-B. Cheng, Q. Zhang, Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes, Research 2019 (2019) 4608940.
    [202] Y. Liu, X. Qin, S. Zhang, L. Zhang, F. Kang, G. Chen, X. Duan, B. Li, A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode, Journal of Materials Chemistry A 7(21) (2019) 13225-13233.
    [203] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Advanced materials 28(9) (2016) 1853-1858.
    [204] Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Advanced Materials 29(10) (2017) 1605531.
    [205] A. Wang, X. Zhang, Y.-W. Yang, J. Huang, X. Liu, J. Luo, Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes, Chem 4(9) (2018) 2192-2200.
    [206] G. Hou, Q. Sun, Q. Ai, X. Ren, X. Xu, H. Guo, S. Guo, L. Zhang, J. Feng, F. Ding, Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries, Journal of Power Sources 416 (2019) 141-147.
    [207] D.H. Jeon, Wettability in electrodes and its impact on the performance of lithium-ion batteries, Energy Storage Materials 18 (2019) 139-147.
    [208] Y. Xie, H. Zou, H. Xiang, R. Xia, D. Liang, P. Shi, S. Dai, H. Wang, Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes, Journal of membrane science 503 (2016) 25-30.
    [209] M.-S. Wu, T.-L. Liao, Y.-Y. Wang, C.-C. Wan, Assessment of the wettability of porous electrodes for lithium-ion batteries, Journal of applied electrochemistry 34(8) (2004) 797-805.
    [210] J.-H. Park, J.-H. Cho, W. Park, D. Ryoo, S.-J. Yoon, J.H. Kim, Y.U. Jeong, S.-Y. Lee, Close-packed SiO2/poly (methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries, Journal of Power Sources 195(24) (2010) 8306-8310.
    [211] S.S. Zhang, X. Fan, C. Wang, Preventing lithium dendrite-related electrical shorting in rechargeable batteries by coating separator with a Li-killing additive, Journal of Materials Chemistry A 6(23) (2018) 10755-10760.
    [212] Y.-E. Miao, G.-N. Zhu, H. Hou, Y.-Y. Xia, T. Liu, Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries, Journal of Power Sources 226 (2013) 82-86.
    [213] L. Yu, J. Miao, Y. Jin, J.Y. Lin, A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries, Frontiers of Chemical Science and Engineering 11(3) (2017) 346-352.
    [214] J.D. Xie, C.C. Fu, C.C. Liao, R.S. Juang, Y.A. Gandomi, Alumina nanocoating of polymer separators for enhanced thermal and electrochemical performance of Li–ion batteries, Asia‐Pacific Journal of Chemical Engineering (2019) e2335.
    [215] Y. Liu, Q. Liu, L. Xin, Y. Liu, F. Yang, E.A. Stach, J. Xie, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nature Energy 2(7) (2017) 17083.
    [216] H. Lee, X. Ren, C. Niu, L. Yu, M.H. Engelhard, I. Cho, M.H. Ryou, H.S. Jin, H.T. Kim, J. Liu, Suppressing lithium dendrite growth by metallic coating on a separator, Advanced Functional Materials 27(45) (2017) 1704391.
    [217] M.Z. Mayers, J.W. Kaminski, T.F. Miller III, Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries, The Journal of Physical Chemistry C 116(50) (2012) 26214-26221.
    [218] H. Yang, E.O. Fey, B.D. Trimm, N. Dimitrov, M.S. Whittingham, Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency, Journal of Power Sources 272 (2014) 900-908.
    [219] H. Sano, H. Sakaebe, H. Senoh, H. Matsumoto, Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes, Journal of The Electrochemical Society 161(9) (2014) A1236-A1240.
    [220] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.G. Zhang, Anode‐free rechargeable lithium metal batteries, Advanced Functional Materials 26(39) (2016) 7094-7102.
    [221] B. Neudecker, N. Dudney, J. Bates, “Lithium‐free” thin‐film battery with in situ plated Li anode, Journal of the Electrochemical Society 147(2) (2000) 517-523.
    [222] H.-K. Kim, T.-Y. Seong, J.-H. Lim, W.I. Cho, Y.S. Yoon, Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors, Journal of power sources 102(1-2) (2001) 167-171.
    [223] N.A. Sahalie, A.A. Assegie, W.-N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.-J. Huang, Y.-W. Yang, B.-J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, Journal of Power Sources 437 (2019) 226912.
    [224] A.A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, B.-J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale 11(6) (2019) 2710-2720.
    [225] R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin, I.G. Hill, J. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nature Energy 4(8) (2019) 683-689.
    [226] T.T. Hagos, B. Thirumalraj, C.-J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries, ACS applied materials & interfaces 11(10) (2019) 9955-9963.
    [227] T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries, Electrochimica Acta 316 (2019) 52-59.
    [228] A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale 10(13) (2018) 6125-6138.
    [229] S. Yan, Z. Li, Z. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25(17) (2009) 10397-10401.
    [230] M. Agostini, S. Brutti, M.A. Navarra, S. Panero, P. Reale, A. Matic, B. Scrosati, A high-power and fast charging Li-ion battery with outstanding cycle-life, Scientific Reports 7(1) (2017) 1104.
    [231] C.F.J. Kuo, M.A. Weret, H.Y. Hung, M.C. Tsai, C.J. Huang, W.N. Su, B.J. Hwang, Sulfurized−poly(acrylonitrile) wrapped carbonsulfur composite cathode material for high performance rechargeable lithiumsulfur batteries, Journal of Power Sources 412 (2019) 670-676.
    [232] W. Deng, X. Zhou, Q. Fang, Z. Liu, Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes, Advanced Energy Materials 8(12) (2018) 1703152.
    [233] X.-B. Cheng, M.-Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Mathis, X.-Q. Zhang, Q. Zhang, J. Jiang, Y. Gogotsi, Nanodiamonds suppress the growth of lithium dendrites, Nature communications 8(1) (2017) 336.
    [234] K. Fukuda, K. Kikuya, K. Isono, M. Yoshio, Foliated natural graphite as the anode material for rechargeable lithium-ion cells, Journal of power sources 69(1-2) (1997) 165-168.
    [235] H. Park, D. Shin, U. Paik, T. Song, Dielectric polarization of a high-energy density graphite anode and its physicochemical effect on Li-ion batteries, Industrial & Engineering Chemistry Research 56(46) (2017) 13776-13782.
    [236] I.H. Son, J.H. Park, S. Park, K. Park, S. Han, J. Shin, S.-G. Doo, Y. Hwang, H. Chang, J.W. Choi, Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities, Nature Communications 8(1) (2017) 1561.
    [237] T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, B.-J. Hwang, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries, Electrochimica Acta (2019).
    [238] A.P. Cohn, N. Muralidharan, R. Carter, K. Share, C.L. Pint, Anode-free sodium battery through in situ plating of sodium metal, Nano letters 17(2) (2017) 1296-1301.
    [239] D. Wilkinson, H. Blom, K. Brandt, D. Wainwright, Effects of physical constraints on Li cyclability, Journal of power sources 36(4) (1991) 517-527.
    [240] Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure, Nano Energy 45 (2018) 463-470.
    [241] Y. Li, Y. Sun, A. Pei, K. Chen, A. Vailionis, Y. Li, G. Zheng, J. Sun, Y. Cui, Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium, ACS central science 4(1) (2017) 97-104.
    [242] J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Science advances 3(11) (2017) eaao3170.
    [243] E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution, ACS Energy Letters 2(6) (2017) 1321-1326.
    [244] J.S. Kim, T.H. Hwang, B.G. Kim, J. Min, J.W. Choi, A lithium‐sulfur battery with a high areal energy density, Advanced Functional Materials 24(34) (2014) 5359-5367.
    [245] X.Q. Zhang, X. Chen, X.B. Cheng, B.Q. Li, X. Shen, C. Yan, J.Q. Huang, Q. Zhang, Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes, Angewandte Chemie International Edition 57(19) (2018) 5301-5305.
    [246] M. Ebadi, M.J. Lacey, D. Brandell, C.M. Araujo, Density Functional Theory Modeling the Interfacial Chemistry of the LiNO3 Additive for Lithium–Sulfur Batteries by Means of Simulated Photoelectron Spectroscopy, The Journal of Physical Chemistry C 121(42) (2017) 23324-23332.
    [247] S. Xiong, K. Xie, Y. Diao, X. Hong, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries, Electrochimica Acta 83 (2012) 78-86.
    [248] S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery, Electrochimica Acta 70 (2012) 344-348.
    [249] S.S. Zhang, A new finding on the role of LiNO3 in lithium-sulfur battery, Journal of Power Sources 322 (2016) 99-105.
    [250] L. Zhang, M. Ling, J. Feng, L. Mai, G. Liu, J. Guo, The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries, Energy Storage Materials 11 (2018) 24-29.
    [251] B.S. Parimalam, A.D. MacIntosh, R. Kadam, B.L. Lucht, Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6, The Journal of Physical Chemistry C 121(41) (2017) 22733-22738.
    [252] A.S. Wotango, W.-N. Su, A.M. Haregewoin, H.-M. Chen, J.-H. Cheng, M.-H. Lin, C.-H. Wang, B.J. Hwang, Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance, ACS applied materials & interfaces 10(30) (2018) 25252-25262.
    [253] X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nature nanotechnology (2018) 1.
    [254] Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, Y. Cui, Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nature communications 9(1) (2018) 3656.
    [255] J.-J. Woo, V.A. Maroni, G. Liu, J.T. Vaughey, D.J. Gosztola, K. Amine, Z. Zhang, Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion, Journal of The Electrochemical Society 161(5) (2014) A827-A830.
    [256] S.S. Zhang, X. Fan, C. Wang, An in-situ enabled lithium metal battery by plating lithium on a copper current collector, Electrochemistry Communications 89 (2018) 23-26.
    [257] Z. Chen, J. Zhou, Y. Guo, C. Liang, J. Yang, J. Wang, Y. Nuli, A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery, Electrochimica Acta 282 (2018) 555-562.
    [258] H. Zheng, X. Chen, Y. Yang, L. Li, G. Li, Z. Guo, C. Feng, Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance, ACS applied materials & interfaces 9(45) (2017) 39560-39568.
    [259] Y. Wang, J. Roller, R. Maric, Morphology-Controlled One-Step Synthesis of Nanostructured LiNi1/3Mn1/3Co1/3O2 Electrodes for Li-Ion Batteries, ACS Omega 3(4) (2018) 3966-3973.
    [260] Y. Zhang, J. Qian, W. Xu, S.M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M.H. Engelhard, D. Mei, R. Cao, Dendrite-free lithium deposition with self-aligned nanorod structure, Nano letters 14(12) (2014) 6889-6896.
    [261] M. Zhao, S. Kariuki, H.D. Dewald, F.R. Lemke, R.J. Staniewicz, E.J. Plichta, R.A. Marsh, Electrochemical Stability of Copper in Lithium‐Ion Battery Electrolytes, Journal of the Electrochemical Society 147(8) (2000) 2874-2879.
    [262] Q. Xu, Y. Yang, H. Shao, Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries, Electrochimica Acta 212 (2016) 758-766.
    [263] J.K.S. Goodman, P.A. Kohl, Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites, Journal of The Electrochemical Society 161(9) (2014) D418-D424.
    [264] Macherey-Nagel, QUANTIFIED® Nitrate/Nitrite test strips, 10.07.2019,, pp. https://www.mn-net.com/tabid/10327/default.aspx.
    [265] G.M. Veith, M. Doucet, R.L. Sacci, B. Vacaliuc, J.K. Baldwin, J.F. Browning, Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive, Scientific reports 7(1) (2017) 6326.
    [266] Z. Hu, S. Zhang, S. Dong, W. Li, H. Li, G. Cui, L. Chen, Poly (ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes, Chemistry of Materials 29(11) (2017) 4682-4689.
    [267] S.J. An, J. Li, Y. Sheng, C. Daniel, D.L. Wood, Long-term lithium-ion battery performance improvement via ultraviolet light treatment of the graphite anode, Journal of The Electrochemical Society 163(14) (2016) 2866-2875.
    [268] C.-Z. Zhao, X.-B. Cheng, R. Zhang, H.-J. Peng, J.-Q. Huang, R. Ran, Z.-H. Huang, F. Wei, Q. Zhang, Li2S5-based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Materials 3 (2016) 77-84.
    [269] M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, B.L. Lucht, Effect of vinylene carbonate and fluoroethylene carbonate on SEI formation on graphitic anodes in Li-Ion batteries, Journal of The Electrochemical Society 162(13) (2015) 7008-7014.
    [270] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir 28(1) (2011) 965-976.
    [271] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, A combined experimental and theoretical study of surface film formation: Effect of oxygen on the reduction mechanism of propylene carbonate, Journal of Power Sources 244 (2013) 318-327.
    [272] T. Yamanaka, H. Nakagawa, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, Z. Ogumi, In Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithium‐Ion Batteries by Using Ultrafine Multifiber Probes, ChemSusChem 10(5) (2017) 855-861.
    [273] C.M. Burba, R. Frech, Spectroscopic measurements of ionic association in solutions of LiPF6, The Journal of Physical Chemistry B 109(31) (2005) 15161-15164.
    [274] K. Mukai, T. Inoue, Y. Kato, S. Shirai, Superior Low-Temperature Power and Cycle Performances of Na-Ion Battery over Li-Ion Battery, ACS Omega 2(3) (2017) 864-872.
    [275] L.J. Hardwick, M. Holzapfel, A. Wokaun, P. Novák, Raman study of lithium coordination in EMI‐TFSI additive systems as lithium‐ion battery ionic liquid electrolytes, Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 38(1) (2007) 110-112.
    [276] J. Ming, Z. Cao, W. Wahyudi, M. Li, P. Kumar, Y. Wu, J.-Y. Hwang, M.N. Hedhili, L. Cavallo, Y.-K. Sun, New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases, ACS Energy Letters 3(2) (2018) 335-340.
    [277] H. Wang, M. Yoshio, KPF6 dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors, Journal of Power Sources 195(4) (2010) 1263-1265.
    [278] T.A. Pham, K.E. Kweon, A. Samanta, V. Lordi, J.E. Pask, Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations, The Journal of Physical Chemistry C 121(40) (2017) 21913-21920.
    [279] R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan, Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite‐Free Lithium Metal Anodes, Angewandte Chemie 129(27) (2017) 7872-7876.
    [280] R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao, C. Yan, J.Q. Huang, Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode, Advanced Functional Materials 28(8) (2018) 1705838.
    [281] T.A. Zegeye, M.-C. Tsai, J.-H. Cheng, M.-H. Lin, H.-M. Chen, J. Rick, W.-N. Su, C.-F.J. Kuo, B.-J. Hwang, Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries, Journal of Power Sources 353 (2017) 298-311.
    [282] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature materials 9(4) (2010) 353.
    [283] G. Salitra, E. Markevich, M. Afri, Y. Talyosef, P. Hartmann, J. Kulisch, Y.-K. Sun, D. Aurbach, High Performance Cells Containing Lithium Metal Anodes, LiNi0.6Co0.2Mn0.2O2 (NCM 622) Cathodes and Fluoroethylene Carbonate Based Electrolyte Solution with Practical Loading, ACS applied materials & interfaces (2018).
    [284] L. Suo, W. Xue, M. Gobet, S.G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Fluorine-donating electrolytes enable highly reversible 5 V - class Li metal batteries, Proceedings of the National Academy of Sciences (2018) 201712895.
    [285] J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery, Nature communications 7 (2016) 12032.
    [286] T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.-J. Huang, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries, Journal of The Electrochemical Society 166(8) (2019) 1501-1509.
    [287] Y. Wang, Z. Wang, D. Lei, W. Lv, Q. Zhao, B. Ni, Y. Liu, B. Li, F. Kang, Y.-B. He, Spherical Li Deposited inside 3D Cu Skeleton as Anode with Ultra-Stable Performance, ACS applied materials & interfaces (10)24 (2018) 20244-20249.
    [288] Q. Yun, Y.B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.H. Yang, Chemical dealloying derived 3D porous current collector for Li metal anodes, Advanced Materials 28(32) (2016) 6932-6939.
    [289] Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, A Top‐Down Strategy toward 3D Carbon Nanosheet Frameworks Decorated with Hollow Nanostructures for Superior Lithium Storage, Advanced Functional Materials 26(42) (2016) 7590-7598.
    [290] Y. Zhang, W. Luo, C. Wang, Y. Li, C. Chen, J. Song, J. Dai, E.M. Hitz, S. Xu, C. Yang, High-capacity, low-tortuosity, and channel-guided lithium metal anode, Proceedings of the National Academy of Sciences 114(14) (2017) 3584-3589.
    [291] J.-S. Kim, D.W. Kim, H.T. Jung, J.W. Choi, Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive, Chemistry of Materials 27(8) (2015) 2780-2787.
    [292] W. Tang, X. Yin, S. Kang, Z. Chen, B. Tian, S.L. Teo, X. Wang, X. Chi, K.P. Loh, H.W. Lee, Lithium silicide surface enrichment: a solution to lithium metal battery, Advanced Materials 30(34) (2018) 1801745.
    [293] C. Simari, E. Lufrano, L. Coppola, I. Nicotera, Composite Gel Polymer Electrolytes Based on Organo-Modified Nanoclays: Investigation on Lithium-Ion Transport and Mechanical Properties, Membranes 8(3) (2018) 69.
    [294] M.-S. Song, G. Chang, D.-W. Jung, M.-S. Kwon, P. Li, J.-H. Ku, J.-M. Choi, K. Zhang, G.-R. Yi, Y. Cui, Strategy for Boosting Li-Ion Current in Silicon Nanoparticles, ACS Energy Letters 3(9) (2018) 2252-2258.
    [295] X. Chen, X.-R. Chen, T.-Z. Hou, B.-Q. Li, X.-B. Cheng, R. Zhang, Q. Zhang, Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes, Science advances 5(2) (2019) 7728.
    [296] H. Zhang, X. Liao, Y. Guan, Y. Xiang, M. Li, W. Zhang, X. Zhu, H. Ming, L. Lu, J. Qiu, Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode, Nature communications 9(1) (2018) 3729.
    [297] G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula, D. Wang, L.-Q. Chen, D. Wang, Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects, Nature Energy 3(12) (2018) 1076.
    [298] D. Wu, L. Deng, Y. Sun, K.S. Teh, C. Shi, Q. Tan, J. Zhao, D. Sun, L. Lin, A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating, RSC Advances 7(39) (2017) 24410-24416.
    [299] Q. Wang, W.-L. Song, L.-Z. Fan, Y. Song, Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries, Journal of Membrane Science 486 (2015) 21-28.
    [300] F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nature Energy (2019) 1.
    [301] J. Xie, J. Wang, H.R. Lee, K. Yan, Y. Li, F. Shi, W. Huang, A. Pei, G. Chen, R. Subbaraman, Engineering stable interfaces for three-dimensional lithium metal anodes, Science Advances 4(7) (2018) 5168.
    [302] L. Wang, L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li, H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating, Energy Storage Materials 10 (2018) 16-23.
    [303] H.-K. Jing, L.-L. Kong, S. Liu, G.-R. Li, X.-P. Gao, Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery, Journal of Materials Chemistry A 3(23) (2015) 12213-12219.
    [304] L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.-J. Huang, S.-K. Jiang, W.-N. Su, Y.-W. Yang, Li7La2.75Ca0.25Zr1.75Nb0.25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochimica Acta (2019) 134825.
    [305] L. Samain, A. Jaworski, M. Edén, D.M. Ladd, D.-K. Seo, F.J. Garcia-Garcia, U. Häussermann, Structural analysis of highly porous γ-Al2O3, Journal of Solid State Chemistry 217 (2014) 1-8.
    [306] O.-Y. Kwon, H.-J. Na, H.-J. Kim, D.-W. Lee, S.-M. Nam, Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale research letters 7(1) (2012) 261.
    [307] R.F. Ribeiro, L.C. Pardini, N.P. Alves, B. Júnior, C.A. Rios, Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion, Polimeros 25(6) (2015) 523-530.
    [308] D. Kysil, A. Vasin, S. Sevostianov, V.Y. Degoda, V. Strelchuk, V. Naseka, Y.P. Piryatinski, V. Tertykh, A. Nazarov, V. Lysenko, Formation and Luminescent Properties of Al2O3: SiOC Nanocomposites on the Base of Alumina Nanoparticles Modified by Phenyltrimethoxysilane, Nanoscale research letters 12(1) (2017) 477.
    [309] D.N. Goldstein, J.A. McCormick, S.M. George, Al2O3 atomic layer deposition with trimethylaluminum and ozone studied by in situ transmission FTIR spectroscopy and quadrupole mass spectrometry, The Journal of Physical Chemistry C 112(49) (2008) 19530-19539.
    [310] Y. Gu, W.-W. Wang, Y.-J. Li, Q.-H. Wu, S. Tang, J.-W. Yan, M.-S. Zheng, D.-Y. Wu, C.-H. Fan, W.-Q. Hu, Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes, Nature communications 9(1) (2018) 1339.
    [311] M. Stich, M. Göttlinger, M. Kurniawan, U. Schmidt, A. Bund, Hydrolysis of LiPF6 in carbonate-based electrolytes for lithium-ion batteries and in aqueous media, The Journal of Physical Chemistry C 122(16) (2018) 8836-8842.
    [312] W. Zhang, H. Huang, F. Li, K. Deng, X. Wang, Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation, Journal of Materials Chemistry A 2(44) (2014) 19084-19094.
    [313] D. Wang, Z. Xu, Q. Luo, X. Li, J. An, R. Yin, C. Bao, Preparation and visible-light photocatalytic performances of g - C3N4 surface hybridized with a small amount of CdS nanoparticles, Journal of materials science 51(2) (2016) 893-902.
    [314] H. Li, Y. Jing, X. Ma, T. Liu, L. Yang, B. Liu, S. Yin, Y. Wei, Y. Wang, Construction of a well-dispersed Ag/graphene-like g - C3N4 photocatalyst and enhanced visible light photocatalytic activity, RSC Advances 7(14) (2017) 8688-8693.
    [315] L. Fan, H.L. Zhuang, W. Zhang, Y. Fu, Z. Liao, Y. Lu, Stable Lithium Electrodeposition at Ultra‐High Current Densities Enabled by 3D PMF/Li Composite Anode, Advanced Energy Materials 8(15) (2018) 1703360.
    [316] S.-M. Lam, J.-C. Sin, A.R. Mohamed, A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater, Materials Science in Semiconductor Processing 47 (2016) 62-84.
    [317] Z.-A. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting, Applied Catalysis B: Environmental 192 (2016) 116-125.
    [318] Y. Tsai, B. Hwang, G. Ceder, H. Sheu, D. Liu, J. Lee, In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling, Chemistry of materials 17(12) (2005) 3191-3199.
    [319] L. Jeurgens, W. Sloof, F. Tichelaar, E. Mittemeijer, Composition and chemical state of the ions of aluminium-oxide films formed by thermal oxidation of aluminium, Surface science 506(3) (2002) 313-332.
    [320] Q. Liu, H. Qin, J.A. Boscoboinik, G. Zhou, Comparative study of the oxidation of NiAl (100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy, Langmuir 32(44) (2016) 11414-11421.
    [321] K. Roodenko, O. Seitz, Y. Gogte, J.-F. Veyan, X.-M. Yan, Y. Chabal, Modification of the adhesive properties of XeF2-etched aluminum surfaces by deposition of organic self-assembled monolayers, The Journal of Physical Chemistry C 114(51) (2010) 22566-22572.
    [322] L. Chen, J.G. Connell, A. Nie, Z. Huang, K.R. Zavadil, K.C. Klavetter, Y. Yuan, S. Sharifi-Asl, R. Shahbazian-Yassar, J.A. Libera, Lithium metal protected by atomic layer deposition metal oxide for high performance anodes, Journal of Materials Chemistry A 5(24) (2017) 12297-12309.
    [323] Y. Liu, N.S. Hudak, D.L. Huber, S.J. Limmer, J.P. Sullivan, J.Y. Huang, In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles, Nano letters 11(10) (2011) 4188-4194.
    [324] S.C. Jung, Y.-K. Han, How do Li atoms pass through the Al2O3 coating layer during lithiation in Li-ion batteries?, The Journal of Physical Chemistry Letters 4(16) (2013) 2681-2685.
    [325] S.-Y. Kim, Y. Qi, Property evolution of Al2O3 coated and uncoated Si electrodes: a first principles investigation, Journal of The Electrochemical Society 161(11) (2014) F3137-F3143.
    [326] F. Ding, W. Xu, D. Choi, W. Wang, X. Li, M.H. Engelhard, X. Chen, Z. Yang, J.-G. Zhang, Enhanced performance of graphite anode materials by AlF 3 coating for lithium-ion batteries, Journal of Materials Chemistry 22(25) (2012) 12745-12751.
    [327] H. Zhang, Z. Chen, R. Hu, J. Liu, J. Cui, W. Zhou, C. Yang, Enabling a highly reversible conversion reaction in a lithiated nano-SnO 2 film coated with Al2O3 by atomic layer deposition, Journal of Materials Chemistry A 6(10) (2018) 4374-4385.
    [328] H. Ye, Y.-X. Yin, S.-F. Zhang, Y. Shi, L. Liu, X.-X. Zeng, R. Wen, Y.-G. Guo, L.-J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy 36 (2017) 411-417.
    [329] Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, C. Wu, Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode, Energy Storage Materials 16 (2019) 411-418.
    [330] Y.-T. Chen, S.A. Abbas, N. Kaisar, S.H. Wu, H.-A. Chen, K.M. Boopathi, M. Singh, J. Fang, C.-W. Pao, C.-W. Chu, Mitigating Metal Dendrite Formation in Lithium–Sulfur Batteries via Morphology-Tunable Graphene Oxide Interfaces, ACS applied materials & interfaces 11(2) (2018) 2060-2070.
    [331] G. Salitra, E. Markevich, M. Afri, Y. Talyosef, P. Hartmann, J. Kulisch, Y.-K. Sun, D. Aurbach, High-Performance Cells Containing Lithium Metal Anodes, LiNi0. 6Co0. 2Mn0. 2O2 (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading, ACS applied materials & interfaces 10(23) (2018) 19773-19782.
    [332] D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nature nanotechnology 11(7) (2016) 626.
    [333] S.-O. Tung, S. Ho, M. Yang, R. Zhang, N.A. Kotov, A dendrite-suppressing composite ion conductor from aramid nanofibres, Nature communications 6 (2015) 6152.
    [334] H. Qiu, T. Tang, M. Asif, X. Huang, Y. Hou, 3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance, Advanced Functional Materials (2019) 1808468.
    [335] K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances 3(4) (2017) e1601659.
    [336] Y. Zhu, J.G. Connell, S. Tepavcevic, P. Zapol, R. Garcia‐Mendez, N.J. Taylor, J. Sakamoto, B.J. Ingram, L.A. Curtiss, J.W. Freeland, Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal, Advanced Energy Materials 9(12) (2019) 1803440.
    [337] Y.J. Nam, S.-J. Cho, D.Y. Oh, J.-M. Lim, S.Y. Kim, J.H. Song, Y.-G. Lee, S.-Y. Lee, Y.S. Jung, Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries, Nano letters 15(5) (2015) 3317-3323.
    [338] F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nature Energy 4(3) (2019) 187.
    [339] C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High‐Voltage Lithium Metal Batteries, Angewandte Chemie 130(43) (2018) 14251-14255.
    [340] Z. Li, X. Li, L. Zhou, Z. Xiao, S. Zhou, X. Zhang, L. Li, L. Zhi, A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks, Nano Energy 49 (2018) 179-185.
    [341] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T.r. Gustafsson, Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive, Chemistry of Materials 27(7) (2015) 2591-2599.
    [342] C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng, R. Xu, J.-Q. Huang, Q. Zhang, Regulating Inner Helmholtz Plane for Stable Solid Electrolyte Inter-phase on Lithium Metal Anodes, Journal of the American Chemical Society (141)23 (2019) 9422-9429.
    [343] S. Kang, H. Qin, L. Zhang, Y. Huang, X. Bai, X. Li, D. Sun, Y. Wang, L. Cui, Efficient photocatalytic bilirubin removal over the biocompatible core/shell P25/g - C3N4 heterojunctions with metal-free exposed surfaces under moderate green light irradiation, Scientific reports 7 (2017) 44338.

    無法下載圖示 全文公開日期 2025/01/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE