簡易檢索 / 詳目顯示

研究生: Bikila
Bikila Alemu Jote
論文名稱: 使用預置鋰與電解液改良以提高無陽極鋰金屬電池之循環壽命
Electrolyte Modification and Prelithiation to Improve the Cycle-life of Anode-Free Lithium Metal Batteries
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
吳乃立
Nae-Lih Wu
潘俊仁
Chun-Jern Pan
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 155
中文關鍵詞: 無陽極鋰金屬電池碳酸二乙酯雙添加劑硝酸鋰過氧化鋰NMC811鋰庫存電化學性能預置鋰鋰枝晶固體電解質界面膜
外文關鍵詞: Anode-free lithium metal battery, DEC, Dual additives, LiNO3, Li2O2, NMC811, Li inventory, Electrochemical performance, Prelithiation, Lithium dendrite, Solid electrolyte interface
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰金屬電池 (Lithium metal batteries, LMBs) 以金屬鋰為陽極在這其中備受期待。鋰金屬電池是高能量密度二次電池的主要競爭對手,其具有最大的理論電容量(3860 mAh g-1)和最低的電化學電位(-3.04 V vs. 標準氫電極)。然而,理論上,無陽極電池(anode-free battery)的想法可能會提供更大的能量密度。無陽極鋰金屬電池(Anode-free lithium metal battery, AFLMB)作為儲能裝置,由於其易於組裝、低成本和擁有更高的能量密度,目前吸引了大量人員研究著。然而,鋰枝晶的生成、安全性和庫侖效率低等問題一直困擾著它的發展。
    為了緩解這些問題,在本論文的第一項研究中,配製了由1.0 M二氟草酸硼酸鋰(LiDFOB)和0.05 M六氟磷酸鋰(LiPF6)溶在體積比為2:2:1的氟代碳酸乙烯酯(FEC)、1,1,2,2四氟乙基-2,2,3,3四氟丙基醚(TTE)與碳酸乙烯酯(DEC)中之混合電解液。在系統為Cu||Li電池和Cu||LiNi0.5Mn0.3Co0.2O2 (NMC532) 電池的測試中,所配製的電解液相對於使用FEC/TTE(體積比為2:3)的電解液具有更好的性能。經過35圈循環後,基於DEC和基於FEC/TTE的電解液的容量保持率分別為45% 和8%。此外,在相同的循環中比較了兩種電解液的平均庫侖效率,DEC的庫侖效率為98.07%,而FEC/TTE (v:v = 2:3) 的庫侖效率僅為92.23%。DEC的添加會提高離子導電率,在陽極部分提供了更多的鋰(Li),開發了富含LiF的固體電解質界面膜(SEI),所有這些都有助於延長電池的使用壽命。根據溶劑的增效作用設計電解液,為未來解決 AFLMB電池問題的方法提供了新的思路。
    具有裸銅箔、富鎳陰極和碳酸酯電解液體系的無陽極鋰金屬電池可以為下世代能量存儲的潛力裝置。然而,在碳酸酯電解液中,富鎳(NMC811)正極的容量衰減相對較快。開發一種解決方案提供額外鋰庫存以減輕由於鋰含量有限,所導致的AFLMB短循環性能問題,這一點至關重要。在第二項工作中,為了增補此問題,我們使用硝酸鋰(LiNO3)作為正極添加劑。LiNO3旨在提供鋰庫存以減輕永久性鋰消耗,同時還在沉積的鋰表面上形成穩定的固體電解質界面膜(SEI)。我們發現,在AFLMB架構中,LiNO¬3在高壓操作期間會分解,有利於產生更好的SEI(由LiF和Li3N組成)以及更好的LiF和Li3N組成之陰極-電解質界面膜(CEI)。在30圈循環後,有硝酸鋰添加劑的電池之庫侖效率(97.69%)明顯高於沒有添加劑的電池(89.25%)。
    無陽極鋰金屬電池裝置仍然面臨著有限的循環壽命和界面問題,阻礙了它們於高性能的用途。這是由於電池固體電解質界面膜(SEI)、電極和電解質在運行期間消耗有限的AFLMB鋰而發生的變化。在這裡,我們報導了由過氧化鋰(Li2O¬2)添加劑和LiNO3添加劑組成的雙添加劑,並用富鎳材料製成了複合正極。雙添加劑電化學分解可增加過量鋰的供應,同時也為電池形成穩定的SEI,這有助於離子的傳輸,並使Cu||LiNi0.8Mn0.1Co0.1O2電池有出色的循環性能,在0.5C倍率測試條件下、於50圈循環時,仍維持出40%的容量保持率。相較之下,一般正極在循環第25圈後,則僅有1.64%的容量保持率。這項研究揭示了簡易正極添加劑的運用方式,以及對延長電池壽命可產生的效果,特別是可用於無陽極電池的應用以補償鋰損失,並為開發更好的添加劑以促進電化學儲能提供了途徑。


    Lithium (Li) metal batteries (LMBs) are promising devices with metallic lithium as an anode. They are a prominent competitor for high-energy-density rechargeable batteries, which have the largest theoretical capacity (3860 mAh g-1) and the lowest electrochemical potential (-3.04 V vs. standard hydrogen electrode). However, theoretically, anode-free cell ideas might deliver even greater energy density. The anode-free lithium metal batteries (AFLMBs) are a form of energy storage device that is now attracting substantial research due to their easy configuration, low cost, and increased energy density. Anode-free lithium metal batteries, which have a bare copper foil, Ni-rich cathode, and carbonated-electrolytes system, could be great energy storage for future generations. However, in a carbonate electrolyte, the capacity degradation of Ni-rich (NMC811) cathodes is relatively quick. Moreover, the issues such as dendritic type lithium creation, safety, and low Coulombic efficiency attenuate its beneficial aspects.
    The thesis is dedicated to mitigating these concerns. In the first work of this thesis, the electrolyte formulated consists of 1.0 M lithium difluoro (oxalate) borate (LiDFOB) and 0.05 M lithium hexafluorophosphate (LiPF6) in a mixture of solvents which are fluoroethylene carbonate/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether/ diethyl carbonate (FEC/TTE/DEC) with (2:2:1 by volume). The formulated electrolyte gives improved performance in Cu||Li and Cu||LiNi0.5Mn0.3Co0.2O2 (NMC532) cells relative to the FEC/TTE-based electrolyte (in 2:3 by volume). After 35 cycles, DEC-based and FEC/TTE-based electrolytes retain roughly 45% and 8% of their initial discharge capacity, respectively. Furthermore, the average Coulombic efficiencies of the two electrolytes are compared at the same cycles, and the DEC-based has a Coulombic efficiency of 98.07%, whereas the cell with FEC/TTE-based electrolyte has a Coulombic efficiency of only 92.23 %. The addition of DEC improves ionic conductivity, the provision of more lithium (Li) on the anode part, and the development of LiF-richer solid electrolyte interphase (SEI), all of which contribute to prolonging the battery's lifespan. Electrolyte designing depending on the synergetic effect of the solvents provides a new perspective for future approaches to addressing AFLMB battery issues.
    It is critical to developing a solution to increase the lithium inventory in addition to the positive electrode to mitigate the issue of AFLMBs' short cycling performance due to low lithium. In the second work, to supplement NMC811, we use lithium nitrate (LiNO3) as an additive for the cathode. The LiNO3 is intended to provide lithium inventory to mitigate ongoing lithium depletion while also causing stable solid electrolyte interphase (SEI) to form on the deposited lithium surface. We find that the LiNO3 decomposes during high voltage operation in our AFLMB architecture, favoring the production of a better SEI (consists of LiF and Li3N) and better cathode-electrolyte interphase (CEI) of LiF and Li3N composition. The cell with the lithium nitrate additive has a substantially higher Coulombic efficiency (97.69 %) than the one without the additive (89.25 %) after 30 cycles. This work proposes a new way of prolonging the lifespan of AFLMB.
    Despite significant research into AFLMBs, these devices still face limited cycle life and interfacial issue that prevents them from being used for high-performance purposes. This is due to evolution within the battery solid electrolyte interphases (SEIs), electrodes, and electrolytes during the operation that consumes limited lithium of AFLMBs. Here we report dual additives comprising a lithium peroxide (Li2O2) additive and LiNO3 additive and make a composite cathode with Ni-rich material. The dual additives electrochemical decomposition results in a supply of excess lithium and also in the formation of stable SEI for the cell, which helps in the transport of ions and enables superior cycling of Cu||LiNi0.8Mn0.1Co0.1O2 cell that exhibited the capacity retention of 40% after 50 cycles under 0.5 C-rate test conditions. The cell with a bare cathode exhibit the capacity retention of only 1.64% at the 25th cycle. This research sheds light on previously unknown additive effects upon fabrication with positive electrodes in anode-free batteries to compensate for lithium loss and provides the path for developing better additives to advance electrochemical energy storage.

    中文摘要. iii Abstract... vi Acknowledgements ix List of figures xiii List of tables xix Index of units and abbreviations xx Chapter 1: Energy sources and batteries 1 1.1 Different types of energy sources 1 1.2 Rechargeable batteries 3 1.2.1 Electrolytes 3 1.2.2 Cathode Materials 5 1.2.3 Anode Materials 7 1.3 Lithium metal battery 8 Chapter 2: Challenges and approaches of prelithiation techniques 13 2.1 Anode prelithiation 15 2.2 Cathode prelithiation 15 2.2.1 Electrochemical lithiation 16 2.2.2 Prelithiation by using additives 17 2.3 Anode-free lithium metal battery and Li compensation 21 2.4 Motivation and objectives of the study 36 2.4.1 Motivation 36 2.4.2 Objectives 37 Chapter 3: Experimental section and characterization 39 3.1 Chemicals and reagents 39 3.2 Electrode preparation 41 3.2.1 Cathode material 41 3.2.2 Bare current collector 43 3.3 Electrolyte preparation 43 3.4 Electrochemical tests and characterizations 44 Chapter 4: Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode-free battery 47 4.1 Introduction 47 4.2 Results and discussion 49 4.2.1 Li-Cu cell performance 49 4.2.2 Cu||NMC532 cell performance 51 4.2.3 Surface morphology and compositions 56 4.3 Summary 60 Chapter 5: Lithium nitrate as a surplus lithium source for anode-free cell with Ni-rich (NMC811) cathode 61 5.1 Introduction 61 5.2 Results and discussion 63 5.2.1 Structure and cyclic voltammetry 63 5.2.2 Cu||NMC811 and Li||NMC811 cell performance 65 5.2.3 Surface morphology and conductivity 69 5.2.4 Gas evolution and surface compositions 71 5.3 Summary 77 Chapter 6: Investigating the effect of dual additives on Ni-rich cathode material in anode-free battery….. 79 6.1 Introduction 79 6.2 Results and discussion 82 6.2.1 Optimization, structure and cyclic voltammetry 82 6.2.2 Cu||NMC811 cell performance 87 6.2.3 Surface morphology 90 6.2.4 Gas evolution and surface compositions 93 6.3 Summary 97 Chapter 7: Conclusions and future outlooks 99 7.1 Conclusions 99 7.2 Future outlooks 100 References 103

    1. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7), 7854-7863.
    2. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-76.
    3. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
    4. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J., Electrochemical energy storage for green grid. Chemical reviews 2011, 111 (5), 3577-3613.
    5. Zeng, Q.; Lai, Y.; Jiang, L.; Liu, F.; Hao, X.; Wang, L.; Green, M. A., Integrated photorechargeable energy storage system: next‐generation power source driving the future. Advanced Energy Materials 2020, 10 (14), 1903930.
    6. Larcher, D.; Tarascon, J. M., Towards greener and more sustainable batteries for electrical energy storage. Nature chemistry 2015, 7 (1), 19-29.
    7. Nel, W. P.; Cooper, C. J., Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 2009, 37 (1), 166-180.
    8. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and sustainable energy reviews 2014, 39, 748-764.
    9. Baky, M. A. H.; Rahman, M. M.; Islam, A. S., Development of renewable energy sector in Bangladesh: Current status and future potentials. Renewable and Sustainable Energy Reviews 2017, 73, 1184-1197.
    10. Gurung, A.; Qiao, Q., Solar charging batteries: advances, challenges, and opportunities. Joule 2018, 2 (7), 1217-1230.
    11. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-935.
    12. Nölle, R.; Beltrop, K.; Holtstiege, F.; Kasnatscheew, J.; Placke, T.; Winter, M., A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup. Materials Today 2020, 32, 131-146.
    13. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 1-16.
    14. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy 2016, 1 (10), 1-8.
    15. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics 2015, 17 (7), 4799-844.
    16. Xia, L.; Lee, S.; Jiang, Y.; Li, S.; Liu, Z.; Yu, L.; Hu, D.; Wang, S.; Liu, Y.; Chen, G. Z., Physicochemical and Electrochemical Properties of 1,1,2,2‐Tetrafluoroethyl‐2,2,3,3‐Tetrafluoropropyl Ether as a Co‐Solvent for High‐Voltage Lithium‐Ion Electrolytes. ChemElectroChem 2019, 6 (14), 3747-3755.
    17. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S. C.; Amine, K.; Xu, K.; Wang, C., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology 2018, 13 (8), 715-722.
    18. Hagos, T. T.; Thirumalraj, B.; Huang, C. J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S. F.; Su, W. N.; Hwang, B. J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Material and Interfaces 2019, 11 (10), 9955-9963.
    19. Kim, C.-K.; Kim, K.; Shin, K.; Woo, J.-J.; Kim, S.; Hong, S. Y.; Choi, N.-S., Synergistic effect of partially fluorinated ether and fluoroethylene carbonate for high-voltage lithium-ion batteries with rapid chargeability and dischargeability. ACS applied materials & interfaces 2017, 9 (50), 44161-44172.
    20. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment 2016, 1 (1), 18-42.
    21. Shin, M.; Wu, H.-L.; Narayanan, B.; See, K. A.; Assary, R. S.; Zhu, L.; Haasch, R. T.; Zhang, S.; Zhang, Z.; Curtiss, L. A., Effect of the hydrofluoroether cosolvent structure in acetonitrile-based solvate electrolytes on the Li+ solvation structure and li–s battery performance. ACS applied materials & interfaces 2017, 9 (45), 39357-39370.
    22. Luo, D.; Li, M.; Zheng, Y.; Ma, Q.; Gao, R.; Zhang, Z.; Dou, H.; Wen, G.; Shui, L.; Yu, A., Electrolyte Design for Lithium Metal Anode‐Based Batteries Toward Extreme Temperature Application. Advanced Science 2021, 8 (18), 2101051.
    23. Zhai, P.; Liu, L.; Gu, X.; Wang, T.; Gong, Y., Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials 2020, 10 (34), 2001257.
    24. Dahn, J.; Von Sacken, U.; Juzkow, M.; Al‐Janaby, H., Rechargeable LiNiO2/carbon cells. Journal of the Electrochemical Society 1991, 138 (8), 2207.
    25. Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J., An overview on the advances of LiCoO2 cathodes for lithium‐ion batteries. Advanced Energy Materials 2021, 11 (2), 2000982.
    26. Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M., Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy 2018, 3 (4), 267-278.
    27. Schipper, F.; Erickson, E. M.; Erk, C.; Shin, J.-Y.; Chesneau, F. F.; Aurbach, D., Recent advances and remaining challenges for lithium ion battery cathodes. Journal of the Electrochemical Society 2016, 164 (1), A6220.
    28. Myung, S.-T.; Maglia, F.; Park, K.-J.; Yoon, C. S.; Lamp, P.; Kim, S.-J.; Sun, Y.-K., Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Letters 2017, 2 (1), 196-223.
    29. Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J., Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angewandte Chemie International Edition 2015, 54 (15), 4440-4457.
    30. You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A., Modified high‐nickel cathodes with stable surface chemistry against ambient air for lithium‐ion batteries. Angewandte Chemie 2018, 130 (22), 6590-6595.
    31. Kasnatscheew, J.; Röser, S.; Börner, M.; Winter, M., Do Increased Ni Contents in LiNi x Mn y Co z O2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio. ACS Applied Energy Materials 2019, 2 (11), 7733-7737.
    32. Busà, C.; Belekoukia, M.; Loveridge, M. J., The effects of ambient storage conditions on the structural and electrochemical properties of NMC-811 cathodes for Li-ion batteries. Electrochimica Acta 2021, 366, 137358.
    33. Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews 2018, 89, 292-308.
    34. Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H., First-principles study of alkali metal-graphite intercalation compounds. Journal of Power Sources 2013, 243, 585-587.
    35. Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J., Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39 (8), 3115-3141.
    36. Oumellal, Y.; Delpuech, N.; Mazouzi, D.; Dupre, N.; Gaubicher, J.; Moreau, P.; Soudan, P.; Lestriez, B.; Guyomard, D., The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. Journal of Materials Chemistry 2011, 21 (17), 6201-6208.
    37. Liu, X. H.; Huang, J. Y., In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy & Environmental Science 2011, 4 (10), 3844-3860.
    38. Jerliu, B.; Hüger, E.; Dorrer, L.; Seidlhofer, B.-K.; Steitz, R.; Oberst, V.; Geckle, U.; Bruns, M.; Schmidt, H., Volume expansion during lithiation of amorphous silicon thin film electrodes studied by in-operando neutron reflectometry. The Journal of Physical Chemistry C 2014, 118 (18), 9395-9399.
    39. Gauthier, N.; Courrèges, C.; Goubault, L.; Demeaux, J.; Tessier, C.; Martinez, H., Influence of the positive electrode on Li4Ti5O12 (LTO) electrode/electrolyte interfaces in li-ion batteries. Journal of The Electrochemical Society 2018, 165 (13), A2925.
    40. Colin, J.-F.; Godbole, V.; Novák, P., In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry communications 2010, 12 (6), 804-807.
    41. Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q., Dual‐layered film protected lithium metal anode to enable dendrite‐free lithium deposition. Advanced Materials 2018, 30 (25), 1707629.
    42. Xin, S.; Chang, Z.; Zhang, X.; Guo, Y.-G., Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review 2017, 4 (1), 54-70.
    43. Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J., Metallic anodes for next generation secondary batteries. Chemical Society Reviews 2013, 42 (23), 9011-9034.
    44. Manthiram, A.; Fu, Y.; Su, Y.-S., Challenges and prospects of lithium–sulfur batteries. Accounts of chemical research 2013, 46 (5), 1125-1134.
    45. Seh, Z. W.; Li, W.; Cha, J. J.; Zheng, G.; Yang, Y.; McDowell, M. T.; Hsu, P.-C.; Cui, Y., Sulphur–TiO 2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature communications 2013, 4 (1), 1-6.
    46. Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P. M.; Kim, G.; Grey, C. P., Cycling Li-O2 batteries via LiOH formation and decomposition. Science 2015, 350 (6260), 530-533.
    47. Zheng, J.; Yan, P.; Mei, D.; Engelhard, M. H.; Cartmell, S. S.; Polzin, B. J.; Wang, C.; Zhang, J. G.; Xu, W., Highly stable operation of lithium metal batteries enabled by the formation of a transient high‐concentration electrolyte layer. Advanced Energy Materials 2016, 6 (8), 1502151.
    48. Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS nano 2015, 9 (6), 6373-6382.
    49. Cao, R.; Xu, W.; Lv, D.; Xiao, J.; Zhang, J. G., Anodes for rechargeable lithium‐sulfur batteries. Advanced Energy Materials 2015, 5 (16), 1402273.
    50. Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G., Advanced micro/nanostructures for lithium metal anodes. Advanced Science 2017, 4 (3), 1600445.
    51. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194-206.
    52. Cheng, X.-B.; Zhang, Q., Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries. Journal of Materials Chemistry A 2015, 3 (14), 7207-7209.
    53. Qi, L.; Wu, Z.; Zhao, B.; Liu, B.; Wang, W.; Pei, H.; Dong, Y.; Zhang, S.; Yang, Z.; Qu, L., Advances in artificial layers for stable lithium metal anodes. Chemistry–A European Journal 2020, 26 (19), 4193-4203.
    54. Na, W.; Lee, A. S.; Lee, J. H.; Hwang, S. S.; Kim, E.; Hong, S. M.; Koo, C. M., Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Applied Materials & Interfaces 2016, 8 (20), 12852-12858.
    55. Wood, S. M.; Pham, C. H.; Rodriguez, R.; Nathan, S. S.; Dolocan, A. D.; Celio, H.; de Souza, J. P.; Klavetter, K. C.; Heller, A.; Mullins, C. B., K+ reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase. ACS Energy Letters 2016, 1 (2), 414-419.
    56. Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A., Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy 2016, 1 (9), 1-7.
    57. Liu, Q.; Yang, G.; Liu, S.; Han, M.; Wang, Z.; Chen, L., Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS applied materials & interfaces 2019, 11 (19), 17435-17443.
    58. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C.-J.; Yang, Y.-W.; Su, W.-N.; Dai, H.; Hwang, B.-J., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta 2019, 316, 52-59.
    59. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437, 226912.
    60. Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689.
    61. Hagos, T. M.; Bezabh, H. K.; Redda, H. G.; Moges, E. A.; Huang, W.-H.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Exploring the performance of carbonate and ether-based electrolytes for anode-free lithium metal batteries operating under various conditions. Journal of Power Sources 2021, 512, 230388.
    62. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N., Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS applied materials & interfaces 2019, 11 (10), 9955-9963.
    63. Hagos, T. T.; Su, W.-N.; Huang, C.-J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Tegegne, W. A., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461, 228053.
    64. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
    65. Lee, H.; Ren, X.; Niu, C.; Yu, L.; Engelhard, M. H.; Cho, I.; Ryou, M. H.; Jin, H. S.; Kim, H. T.; Liu, J., Suppressing lithium dendrite growth by metallic coating on a separator. Advanced Functional Materials 2017, 27 (45), 1704391.
    66. Wondimkun, Z. T.; Beyene, T. T.; Weret, M. A.; Sahalie, N. A.; Huang, C.-J.; Thirumalraj, B.; Jote, B. A.; Wang, D.; Su, W.-N.; Wang, C.-H., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources 2020, 450, 227589.
    67. Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J.; Wei, F.; Zhang, Q., Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Advanced Materials 2016, 28 (11), 2155-2162.
    68. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G., An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced materials 2016, 28 (9), 1853-1858.
    69. Gao, Y.; Zhao, Y.; Li, Y. C.; Huang, Q.; Mallouk, T. E.; Wang, D., Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. Journal of the American Chemical Society 2017, 139 (43), 15288-15291.
    70. Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3 (7), 1662-1676.
    71. Yuan, S.; Bao, J. L.; Wang, N.; Zhang, X.; Wang, Y.; Truhlar, D. G.; Xia, Y., Salt-rich solid electrolyte interphase for safer high-energy-density Li metal batteries with limited Li excess. Chemical Communications 2020, 56 (59), 8257-8260.
    72. Bae, J.; Qian, Y.; Li, Y.; Zhou, X.; Goodenough, J. B.; Yu, G., Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy & Environmental Science 2019, 12 (11), 3319-3327.
    73. Yuan, S.; Bao, J. L.; Wei, J.; Xia, Y.; Truhlar, D. G.; Wang, Y., A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy & Environmental Science 2019, 12 (9), 2741-2750.
    74. Zhang, W.; Wu, Q.; Huang, J.; Fan, L.; Shen, Z.; He, Y.; Feng, Q.; Zhu, G.; Lu, Y., Colossal granular lithium deposits enabled by the grain‐coarsening effect for high‐efficiency lithium metal full batteries. Advanced Materials 2020, 32 (24), 2001740.
    75. Fan, X.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J.; Xu, K., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4 (1), 174-185.
    76. Yuan, S.; Weng, S.; Wang, F.; Dong, X.; Wang, Y.; Wang, Z.; Shen, C.; Bao, J. L.; Wang, X.; Xia, Y., Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 2021, 83, 105847.
    77. Yu, Z.; Zhang, J.; Wang, C.; Hu, R.; Du, X.; Tang, B.; Qu, H.; Wu, H.; Liu, X.; Zhou, X., Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries. Journal of Energy Chemistry 2020, 51, 154-160.
    78. Sun, C.; Zhang, X.; Li, C.; Wang, K.; Sun, X.; Ma, Y., Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Materials 2020, 32, 497-516.
    79. Dose, W. M.; Kim, S.; Liu, Q.; Trask, S. E.; Dunlop, A. R.; Ren, Y.; Zhang, Z.; Fister, T. T.; Johnson, C. S., Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries. Journal of Materials Chemistry A 2021, 9 (21), 12818-12829.
    80. Aravindan, V.; Lee, Y. S.; Madhavi, S., Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li‐Ion Batteries. Advanced Energy Materials 2017, 7 (17), 1602607.
    81. Holtstiege, F.; Bärmann, P.; Nölle, R.; Winter, M.; Placke, T., Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges. Batteries 2018, 4 (1), 4.
    82. Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J., Silicon‐based nanomaterials for lithium‐ion batteries: a review. Advanced Energy Materials 2014, 4 (1), 1300882.
    83. Wang, Z.; Fu, Y.; Zhang, Z.; Yuan, S.; Amine, K.; Battaglia, V.; Liu, G., Application of stabilized lithium metal powder (SLMP®) in graphite anode–a high efficient prelithiation method for lithium-ion batteries. Journal of Power Sources 2014, 260, 57-61.
    84. Jarvis, C.; Lain, M.; Yakovleva, M.; Gao, Y., A prelithiated carbon anode for lithium-ion battery applications. Journal of power sources 2006, 162 (2), 800-802.
    85. Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano letters 2016, 16 (1), 282-288.
    86. Sun, Y.; Lee, H.-W.; Seh, Z. W.; Liu, N.; Sun, J.; Li, Y.; Cui, Y., High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy 2016, 1 (1), 1-7.
    87. Sun, Y.; Lee, H. W.; Seh, Z. W.; Zheng, G.; Sun, J.; Li, Y.; Cui, Y., Lithium Sulfide/Metal Nanocomposite as a High‐Capacity Cathode Prelithiation Material. Advanced Energy Materials 2016, 6 (12), 1600154.
    88. Moorhead-Rosenberg, Z.; Allcorn, E.; Manthiram, A., In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwave-assisted chemical lithiation process. Chemistry of Materials 2014, 26 (20), 5905-5913.
    89. Gabrielli, G.; Marinaro, M.; Mancini, M.; Axmann, P.; Wohlfahrt-Mehrens, M., A new approach for compensating the irreversible capacity loss of high-energy Si/C| LiNi0. 5Mn1. 5O4 lithium-ion batteries. Journal of Power Sources 2017, 351, 35-44.
    90. Bie, Y.; Yang, J.; Wang, J.; Zhou, J.; Nuli, Y., Li 2 O 2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chemical Communications 2017, 53 (59), 8324-8327.
    91. Jin, L.; Shen, C.; Wu, Q.; Shellikeri, A.; Zheng, J.; Zhang, C.; Zheng, J. P., Pre‐Lithiation Strategies for Next‐Generation Practical Lithium‐Ion Batteries. Advanced Science 2021, 8 (12), 2005031.
    92. Lin, L.; Qin, K.; Li, M.; Hu, Y.-s.; Li, H.; Huang, X.; Chen, L.; Suo, L., Spinel-related Li2Ni0. 5Mn1. 5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Materials 2022, 45, 821-827.
    93. Shanmukaraj, D.; Grugeon, S.; Laruelle, S.; Douglade, G.; Tarascon, J.-M.; Armand, M., Sacrificial salts: compensating the initial charge irreversibility in lithium batteries. Electrochemistry communications 2010, 12 (10), 1344-1347.
    94. Park, K.; Yu, B. C.; Goodenough, J. B., Li3N as a Cathode Additive for High‐Energy‐Density Lithium‐Ion Batteries. Advanced Energy Materials 2016, 6 (10), 1502534.
    95. Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy 2021, 6 (6), 653-662.
    96. Louli, A.; Metzger, M., Synergies for longer cycle life. Nature Energy 2021, 6 (6), 574-575.
    97. Zhang, Z.; Luo, H.; Liu, Z.; Wang, S.; Zhou, X.; Liu, Z., A chemical lithiation induced Li 4.4 Sn lithiophilic layer for anode-free lithium metal batteries. Journal of Materials Chemistry A 2022.
    98. Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature communications 2021, 12 (1), 1-10.
    99. Nanda, S.; Gupta, A.; Manthiram, A., A lithium–sulfur cell based on reversible lithium deposition from a Li2S cathode host onto a hostless‐anode substrate. Advanced Energy Materials 2018, 8 (25), 1801556.
    100. Genovese, M.; Louli, A.; Weber, R.; Hames, S.; Dahn, J., Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. Journal of The Electrochemical Society 2018, 165 (14), A3321.
    101. Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G., Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Materials 2020, 32, 386-401.
    102. Nanda, S.; Gupta, A.; Manthiram, A., Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries. Advanced Energy Materials 2021, 11 (2), 2000804.
    103. Shao, A.; Tang, X.; Zhang, M.; Bai, M.; Ma, Y., Challenges, Strategies, and Prospects of the Anode‐Free Lithium Metal Batteries. Advanced Energy and Sustainability Research 2022, 3 (4), 2100197.
    104. Zhang, S. S.; Fan, X.; Wang, C., A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta 2017, 258, 1201-1207.
    105. Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y., Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters 2017, 17 (2), 1132-1139.
    106. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
    107. Chen, J.; Li, Q.; Pollard, T. P.; Fan, X.; Borodin, O.; Wang, C., Electrolyte design for Li metal-free Li batteries. Materials Today 2020, 39, 118-126.
    108. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C.-J.; Yang, Y.-W.; Su, W.-N.; Dai, H., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta 2019, 316, 52-59.
    109. Chen, W.; Salvatierra, R. V.; Ren, M.; Chen, J.; Stanford, M. G.; Tour, J. M., Laser‐Induced Silicon Oxide for Anode‐Free Lithium Metal Batteries. Advanced Materials 2020, 32 (33), 2002850.
    110. Chen, J.; Xiang, J.; Chen, X.; Yuan, L.; Li, Z.; Huang, Y., Li2S-based anode-free full batteries with modified Cu current collector. Energy Storage Materials 2020, 30, 179-186.
    111. Louli, A. J.; Genovese, M.; Weber, R.; Hames, S.; Logan, E.; Dahn, J., Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. Journal of The Electrochemical Society 2019, 166 (8), A1291.
    112. Jote, B. A.; Shitaw, K. N.; Weret, M. A.; Yang, S.-C.; Huang, C.-J.; Wang, C.-H.; Weng, Y.-T.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Lithium nitrate as a surplus lithium source for anode-free cell with Ni-rich (NMC811) cathode. Journal of Power Sources 2022, 532, 231303.
    113. Lin, L.; Qin, K.; Zhang, Q.; Gu, L.; Suo, L.; Hu, Y. s.; Li, H.; Huang, X.; Chen, L., Li‐Rich Li2 [Ni0. 8Co0. 1Mn0. 1] O2 for Anode‐Free Lithium Metal Batteries. Angewandte Chemie International Edition 2021, 60 (15), 8289-8296.
    114. Zhang, S. S.; Fan, X.; Wang, C., An in-situ enabled lithium metal battery by plating lithium on a copper current collector. Electrochemistry Communications 2018, 89, 23-26.
    115. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews 2017, 117 (15), 10403-10473.
    116. Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y., Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Advanced Energy Materials 2018, 8 (11), 1702657.
    117. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9 (6), 1955-1988.
    118. Assegie, A. A.; Chung, C.-C.; Tsai, M.-C.; Su, W.-N.; Chen, C.-W.; Hwang, B.-J., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale 2019, 11 (6), 2710-2720.
    119. Beyene, T. T.; Jote, B. A.; Wondimkun, Z. T.; Olbassa, B. W.; Huang, C.-J.; Thirumalraj, B.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries. ACS applied materials & interfaces 2019, 11 (35), 31962-31971.
    120. Kang, T.; Zhao, J.; Guo, F.; Zheng, L.; Mao, Y.; Wang, C.; Zhao, Y.; Zhu, J.; Qiu, Y.; Shen, Y., Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent. ACS applied materials & interfaces 2020, 12 (7), 8168-8175.
    121. Woo, J.-J.; Maroni, V. A.; Liu, G.; Vaughey, J. T.; Gosztola, D. J.; Amine, K.; Zhang, Z., Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. Journal of the Electrochemical Society 2014, 161 (5), A827.
    122. Parimalam, B. S.; Lucht, B. L., Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. Journal of The Electrochemical Society 2018, 165 (2), A251.
    123. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nature communications 2015, 6 (1), 1-9.
    124. Yu, X.; Manthiram, A., Electrode–electrolyte interfaces in lithium-based batteries. Energy & Environmental Science 2018, 11 (3), 527-543.
    125. Liu, J.; Yue, M.; Wang, S.; Zhao, Y.; Zhang, J., A Review of Performance Attenuation and Mitigation Strategies of Lithium‐Ion Batteries. Advanced Functional Materials 2022, 32 (8), 2107769.
    126. Alvarado, J.; Schroeder, M. A.; Pollard, T. P.; Wang, X.; Lee, J. Z.; Zhang, M.; Wynn, T.; Ding, M.; Borodin, O.; Meng, Y. S., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy & Environmental Science 2019, 12 (2), 780-794.
    127. Nilsson, V.; Kotronia, A.; Lacey, M.; Edström, K.; Johansson, P., Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries. ACS Applied Energy Materials 2019, 3 (1), 200-207.
    128. Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G., High‐voltage lithium‐metal batteries enabled by localized high‐concentration electrolytes. Advanced materials 2018, 30 (21), 1706102.
    129. Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angewandte Chemie International Edition 2018, 57 (19), 5301-5305.
    130. Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.-b.; Kang, F.; Li, B., Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources 2018, 389, 120-134.
    131. Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C.-W.; Maier, J.; Armand, M., New horizons for inorganic solid state ion conductors. Energy & Environmental Science 2018, 11 (8), 1945-1976.
    132. Fang, R.; Zhao, S.; Sun, Z.; Wang, D. W.; Cheng, H. M.; Li, F., More reliable lithium‐sulfur batteries: status, solutions and prospects. Advanced materials 2017, 29 (48), 1606823.
    133. Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 2016, 5, 139-164.
    134. Wu, Z.; Xie, Z.; Yoshida, A.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G., Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renewable and Sustainable Energy Reviews 2019, 109, 367-385.
    135. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature nanotechnology 2018, 13 (8), 715-722.
    136. Jin, Y.; Liu, K.; Lang, J.; Zhuo, D.; Huang, Z.; Wang, C.-a.; Wu, H.; Cui, Y., An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nature energy 2018, 3 (9), 732-738.
    137. Tian, Y.; Ding, F.; Zhong, H.; Liu, C.; He, Y.-B.; Liu, J.; Liu, X.; Xu, Q., Li6. 75La3Zr1. 75Ta0. 25O12@ amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Materials 2018, 14, 49-57.
    138. Neudecker, B.; Dudney, N.; Bates, J., “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode. Journal of the Electrochemical Society 2000, 147 (2), 517.
    139. Bates, J.; Dudney, N.; Neudecker, B.; Ueda, A.; Evans, C., Thin-film lithium and lithium-ion batteries. Solid state ionics 2000, 135 (1-4), 33-45.
    140. Bates, J.; Dudney, N.; Gruzalski, G.; Zuhr, R.; Choudhury, A.; Luck, C.; Robertson, J., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of power sources 1993, 43 (1-3), 103-110.
    141. Kim, S.; Jung, C.; Kim, H.; Thomas‐Alyea, K. E.; Yoon, G.; Kim, B.; Badding, M. E.; Song, Z.; Chang, J.; Kim, J., The role of interlayer chemistry in Li‐metal growth through a garnet‐type solid electrolyte. Advanced Energy Materials 2020, 10 (12), 1903993.
    142. Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez del Amo, J. M.; Singh, G.; Llordés, A.; Kilner, J., Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS applied materials & interfaces 2017, 9 (4), 3808-3816.
    143. Sharafi, A.; Meyer, H. M.; Nanda, J.; Wolfenstine, J.; Sakamoto, J., Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. Journal of Power Sources 2016, 302, 135-139.
    144. Tian, Y.; An, Y.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y., Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 2020, 78, 105344.
    145. Yan, K.; Lu, Z.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy 2016, 1 (3), 1-8.
    146. Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O.; Nikolowski, K.; Partsch, M.; Michaelis, A., From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials 2021, 31 (51), 2106608.
    147. Li, P.; Kim, H.; Ming, J.; Jung, H.-G.; Belharouak, I.; Sun, Y.-K., Quasi-compensatory effect in emerging anode-free lithium batteries. eScience 2021, 3-12.
    148. Jote, B. A.; Beyene, T. T.; Sahalie, N. A.; Weret, M. A.; Olbassa, B. W.; Wondimkun, Z. T.; Berhe, G. B.; Huang, C.-J.; Su, W.-N.; Hwang, B. J., Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources 2020, 461, 228102.
    149. Huang, C.-J.; Hsu, Y.-C.; Shitaw, K. N.; Siao, Y.-J.; Wu, S.-H.; Wang, C.-H.; Su, W.-N.; Hwang, B. J., Lithium Oxalate as a Lifespan Extender for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces 2022, 14 (23), 26724-26732.
    150. Lin, L.; Suo, L.; Hu, Y. s.; Li, H.; Huang, X.; Chen, L., Epitaxial Induced Plating Current‐Collector Lasting Lifespan of Anode‐Free Lithium Metal Battery. Advanced Energy Materials 2021, 11 (9), 2003709.
    151. Zegeye, T. A.; Su, W.-N.; Fenta, F. W.; Zeleke, T. S.; Jiang, S.-K.; Hwang, B. J., Ultrathin Li6. 75La3Zr1. 75Ta0. 25O12-Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries. ACS Applied Energy Materials 2020, 3 (12), 11713-11723.
    152. Kautz, D. J.; Tao, L.; Mu, L.; Nordlund, D.; Feng, X.; Zheng, Z.; Lin, F., Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes. Journal of Materials Chemistry A 2018, 6 (33), 16003-16011.
    153. Pieczonka, N. P. W.; Yang, L.; Balogh, M. P.; Powell, B. R.; Chemelewski, K.; Manthiram, A.; Krachkovskiy, S. A.; Goward, G. R.; Liu, M.; Kim, J.-H., Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (44), 22603-22612.
    154. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437.
    155. Cohen, Y. S.; Cohen, Y.; Aurbach, D., Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. The Journal of Physical Chemistry B 2000, 104 (51), 12282-12291.
    156. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
    157. Guéguen, A.; Novák, P.; Berg, E. J., XPS Study of the Interface Evolution of Carbonaceous Electrodes for Li-O2 Batteries during the 1st Cycle. Journal of The Electrochemical Society 2016, 163 (13), A2545.
    158. Deng, B.; Wang, H.; Ge, W.; Li, X.; Yan, X.; Chen, T.; Qu, M.; Peng, G., Investigating the influence of high temperatures on the cycling stability of a LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode using an innovative electrolyte additive. Electrochimica Acta 2017, 236, 61-71.
    159. Hagos, T. T.; Su, W.-N.; Huang, C.-J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Tegegne, W. A.; Cherng, J.-Y.; Yang, Y.-W.; Hwang, B.-J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461.
    160. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
    161. Sahalie, N. A.; Wondimkun, Z. T.; Su, W.-N.; Weret, M. A.; Fenta, F. W.; Berhe, G. B.; Huang, C.-J.; Hsu, Y.-C.; Hwang, B. J., Multifunctional Properties of Al2O3/Polyacrylonitrile Composite Coating on Cu to Suppress Dendritic Growth in Anode-Free Li-Metal Battery. ACS Applied Energy Materials 2020, 3 (8), 7666-7679.
    162. Wondimkun, Z. T.; Beyene, T. T.; Weret, M. A.; Sahalie, N. A.; Huang, C.-J.; Thirumalraj, B.; Jote, B. A.; Wang, D.; Su, W.-N.; Wang, C.-H.; Brunklaus, G.; Winter, M.; Hwang, B.-J., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources 2020, 450.
    163. Wondimkun, Z. T.; Tegegne, W. A.; Shi-Kai, J.; Huang, C.-J.; Sahalie, N. A.; Weret, M. A.; Hsu, J.-Y.; Hsieh, P.-L.; Huang, Y.-S.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries. Energy Storage Materials 2021, 35, 334-344.
    164. Jote, B. A.; Beyene, T. T.; Sahalie, N. A.; Weret, M. A.; Olbassa, B. W.; Wondimkun, Z. T.; Berhe, G. B.; Huang, C.-J.; Su, W.-N.; Hwang, B. J., Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources 2020, 461.
    165. Qiao, Y.; Yang, H.; Chang, Z.; Deng, H.; Li, X.; Zhou, H., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy 2021, 1-10.
    166. Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J., Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett 2013, 13 (9), 4158-63.
    167. Zhao, J.; Lu, Z.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y., Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Communications 2014, 5, 5088.
    168. Zhao, J.; Lu, Z.; Wang, H.; Liu, W.; Lee, H.-W.; Yan, K.; Zhuo, D.; Lin, D.; Liu, N.; Cui, Y., Artificial solid electrolyte interphase-protected Li x Si nanoparticles: an efficient and stable prelithiation reagent for lithium-ion batteries. Journal of the American Chemical Society 2015, 137 (26), 8372-8375.
    169. Zhao, J.; Sun, J.; Pei, A.; Zhou, G.; Yan, K.; Liu, Y.; Lin, D.; Cui, Y., A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Materials 2018, 10, 275-281.
    170. Park, H.; Yoon, T.; Kim, Y.-U.; Ryu, J. H.; Oh, S. M., Li2NiO2 as a sacrificing positive additive for lithium-ion batteries. Electrochimica Acta 2013, 108, 591-595.
    171. Noh, M.; Cho, J., Role of Li6CoO4Cathode Additive in Li-Ion Cells Containing Low Coulombic Efficiency Anode Material. Journal of The Electrochemical Society 2012, 159 (8), A1329-A1334.
    172. Zhang, L.; Dose, W. M.; Vu, A. D.; Johnson, C. S.; Lu, W., Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4. Journal of Power Sources 2018, 400, 549-555.
    173. Wang, H.; Liu, Y.; Li, Y.; Cui, Y., Lithium Metal Anode Materials Design: Interphase and Host. Electrochemical Energy Reviews 2019, 2 (4), 509-517.
    174. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications 2015, 6, 7436.
    175. Zhang, S. S., Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta 2012, 70, 344-348.
    176. Wang, X.; Wang, H.; Liu, M.; Li, W., In-Plane Lithium Growth Enabled by Artificial Nitrate-Rich Layer: Fast Deposition Kinetics and Desolvation/Adsorption Mechanism. Small 2020, 16 (28), 2000769.
    177. Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q., An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode. Advanced Materials 2018, 30 (45), 1804461.
    178. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of the Electrochemical Society 2009, 156 (8), A694.
    179. Gao, Y.; Li, D.; Yang, M.; Xia, X.; Long, J.; Liu, H.; Chen, L.; Iqbal, A., Unraveling the high temperature cycling performance of high-nickel LiNi0.85Co0.10Mn0.05O2 cathode materials in pouch-type full cells. Electrochimica Acta 2020, 359.
    180. Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J., Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Appl Mater Interfaces 2018, 10 (45), 38892-38899.
    181. Rowden, B.; Garcia-Araez, N., A review of gas evolution in lithium ion batteries. Energy Reports 2020, 6, 10-18.
    182. Wang, X.; Wang, H.; Liu, M.; Li, W., In‐Plane Lithium Growth Enabled by Artificial Nitrate‐Rich Layer: Fast Deposition Kinetics and Desolvation/Adsorption Mechanism. Small 2020, 16 (28), 2000769.
    183. Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high‐voltage lithium metal batteries. Angewandte Chemie 2018, 130 (43), 14251-14255.
    184. Gourley, S. W. D.; Or, T.; Chen, Z., Breaking free from cobalt reliance in lithium-ion batteries. Iscience 2020, 101505.
    185. Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J., Prospect and reality of Ni‐rich cathode for commercialization. Advanced energy materials 2018, 8 (6), 1702028.
    186. Li, W.; Erickson, E. M.; Manthiram, A., High-nickel layered oxide cathodes for lithium-based automotive batteries. Nature Energy 2020, 5 (1), 26-34.
    187. Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P., Phase Behavior during Electrochemical Cycling of Ni‐Rich Cathode Materials for Li‐Ion Batteries. Advanced Energy Materials 2021, 11 (7), 2003404.
    188. Kang, K.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G., Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311 (5763), 977-980.
    189. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A., Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy 2018, 3 (1), 16-21.
    190. Louli, A.; Eldesoky, A.; Weber, R.; Genovese, M.; Coon, M.; deGooyer, J.; Deng, Z.; White, R.; Lee, J.; Rodgers, T., Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy 2020, 5 (9), 693-702.
    191. Salvatierra, R. V.; Chen, W.; Tour, J. M., What Can be Expected from “Anode‐Free” Lithium Metal Batteries? Advanced Energy and Sustainability Research 2021, 2 (5), 2000110.
    192. Rodriguez, R.; Loeffler, K. E.; Edison, R. A.; Stephens, R. M.; Dolocan, A.; Heller, A.; Mullins, C. B., Effect of the electrolyte on the cycling efficiency of lithium-limited cells and their morphology studied through in situ optical imaging. ACS Applied Energy Materials 2018, 1 (11), 5830-5835.
    193. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515.
    194. Peled, E.; Menkin, S., SEI: past, present and future. Journal of The Electrochemical Society 2017, 164 (7), A1703.
    195. Louli, A.; Eldesoky, A.; deGooyer, J.; Coon, M.; Aiken, C.; Simunovic, Z.; Metzger, M.; Dahn, J., Different Positive Electrodes for Anode-Free Lithium Metal Cells. Journal of The Electrochemical Society 2022, 169 (4), 040517.
    196. Zhang, J.-G., Anode-less. Nature Energy 2019, 4 (8), 637-638.
    197. Zhang, Y.; Luo, W.; Wang, C.; Li, Y.; Chen, C.; Song, J.; Dai, J.; Hitz, E. M.; Xu, S.; Yang, C., High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences 2017, 114 (14), 3584-3589.
    198. Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H., Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature materials 2019, 18 (4), 384-389.
    199. Zhang, L.; Jeong, S.; Reinsma, N.; Sun, K.; Maxwell, D. S.; Gionet, P.; Yu, T., Decomposition of Li2O2 as the Cathode Prelithiation Additive for Lithium-Ion Batteries without an Additional Catalyst and the Initial Performance Investigation. Journal of The Electrochemical Society 2021, 168 (12), 120520.
    200. Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J., Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano letters 2013, 13 (9), 4158-4163.
    201. Sun, Y.; Lee, H.-W.; Zheng, G.; Seh, Z. W.; Sun, J.; Li, Y.; Cui, Y., In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes. Nano Letters 2016, 16 (2), 1497-1501.
    202. Noh, M.; Cho, J., Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material. Journal of the Electrochemical Society 2012, 159 (8), A1329.
    203. Johnson, C.; Kang, S.-H.; Vaughey, J.; Pol, S.; Balasubramanian, M.; Thackeray, M., Li2O Removal from Li5FeO4: A cathode precursor for lithium-ion batteries. Chemistry of Materials 2010, 22 (3), 1263-1270.
    204. Sun, Y.; Li, Y.; Sun, J.; Li, Y.; Pei, A.; Cui, Y., Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Materials 2017, 6, 119-124.
    205. Li, S.; Zhang, W.; Wu, Q.; Fan, L.; Wang, X.; Wang, X.; Shen, Z.; He, Y.; Lu, Y., Synergistic dual‐additive electrolyte enables practical lithium‐metal batteries. Angewandte Chemie International Edition 2020, 59 (35), 14935-14941.
    206. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. Journal of The Electrochemical Society 2017, 164 (7), A1361.
    207. Guéguen, A.; Streich, D.; He, M.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J., Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry. Journal of The Electrochemical Society 2016, 163 (6), A1095.

    無法下載圖示 全文公開日期 2025/08/20 (校內網路)
    全文公開日期 2025/08/20 (校外網路)
    全文公開日期 2025/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE