簡易檢索 / 詳目顯示

研究生: 許雅淨
Ya-Ching Hsu
論文名稱: 利用草酸鋰犧牲鹽提升無陽極鋰金屬電池鋰源之研究
Using Lithium Oxalate as Sacrificial Salt to Enhance the Lithium Source in Anode Free Lithium Metal Batteries
指導教授: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 預置鋰預鋰化鹽草酸鋰無陽極鋰金屬電池
外文關鍵詞: Pre-lithiation, Prelithiated salt, Lithium oxalate, Anode free lithium metal battery
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用低成本、對環境友好,且具有高理論電容量(525 mAh/g)的草酸鋰作為預置鋰鹽類,將其添加進NMC正極活性材料中,透過其分解後所提供的過量鋰,來解決無陽極(Anode free)鋰金屬電池系統中鋰源匱乏與電容量衰退快速的問題。
    本研究主要分為三部分,其一是探討提高草酸鋰添加量對無陽極電池之電化學性能的影響;其二是分析電池在充放電的過程中,草酸鋰分解所產生CO2變化量;其三是透過不同的熱形成(hot formation)方法,來減緩電池電容量衰退的速度。
    第一部分透過使用黏度較低之PVDF HSV900黏著劑與將草酸鋰預先進行球磨,藉以改善正極材料之分散性,並得到隨著草酸鋰的添加量增加,放電電容量維持穩定的平台延長,電池的放電電容量保持率隨之提高的電化學結果。未添加草酸鋰之NMC無陽極電池與添加草酸鋰之NMC無陽極電池(NMC:草酸鋰重量比為80:20)相比,放電電容量保持率高於第二圈之50 %的充放電圈數可由13圈提高至86圈,有效地延長電池的循環壽命。
    第二部分利用GC-MS分別分析純草酸鋰、純NMC與添加草酸鋰之NMC作為無陽極電池的正極時,充放電的過程中對CO2氣體之產量變化及氣體對鋰沉積之形貌影響。
    第三部分是嘗試三種不同的熱形成程序,藉以提升電池之電容量保持率,並觀察不同方法對電化學結果之影響。


    This research is to study lithium oxalate as a prelithiated salt to improve the capacity retention of anode-free batteries, because of its low cost, environmental beingness, and high theoretical capacity (525 mAh/g). Adding lithium oxalate into NMC cathode material to provide excess lithium source is expected to solve the shortage of lithium and reduce capacity fading.
    This research consists of three parts. First, the influence of electrochemical performance by increasing the amount of lithium oxalate additive was studied. Second, the CO2 production caused by lithium oxalate decomposition was analyzed during cycling. The third part is using different method to reduce the capacity fading by a hot formation.
    PVDF HSV900 with low viscosity was selected as the binder and ball-milled with lithium oxalate to improve their dispersion in the cathode material. From the electrochemical results, the discharge capacity retention of the cell indeed increased as the amount of lithium oxalate additive increased. Compared to bare NMC cell, the discharge capacity retention reaching 80 % of its original value could be significantly increased from 13 cycles to 86 cycles, when 20 wt% prelithiated salt was added in the cell (NMC: lithium oxalate (80:20)). GC-MS was applied to analyze CO2 production during cycling. Finally, three different hot formation methods were studied to observe the effects of hot formation on their electrochemical performance.

    摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XI 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子電池的發展 2 1.3 鋰離子二次電池的組成與機制 5 1.3.1 正極(陰極)材料 7 1.3.2 負極(陽極)材料 11 1.3.3 電解質 12 1.3.4 隔離膜 14 1.4 研究動機 15 第 2 章 文獻回顧 17 2.1 Anode free電池 17 2.1.1 Anode free的機制 17 2.1.2 Anode Free發展之阻礙 19 2.1.3 Anode free的應用 20 2.2 預置鋰方法 21 2.2.1 預置鋰-物理法 22 2.2.2 預置鋰-化學法 24 2.2.3 預置鋰-電化學法 25 2.2.4 預置鋰-添加預鋰化材料作為電極添加材料 27 2.3 犧牲鹽類的選擇 31 第 3 章 實驗方法及實驗儀器 33 3.1 儀器設備 33 3.2 實驗藥品 35 3.3 實驗步驟 36 3.3.1 添加預鋰化材料之預置鋰法 36 3.4 電化學效能測試 39 3.4.1 電池充放電測試 40 3.4.2 電化學交流阻抗(Electrochemical impedance spectroscopy, EIS) 40 3.5 材料的分析與鑑定 41 3.5.1 場發射聚焦離子束顯微鏡(Focused Ion Beam, FIB) 41 3.5.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 42 3.5.3 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 43 3.5.4 氣相層析質譜儀(GC-MS) 44 第 4 章 結果與討論 45 4.1 草酸鋰之基本分析 45 4.1.1 草酸鋰之電化學分析 45 4.2 不同黏著劑對LNMO添加草酸鋰之電性探討 47 4.2.1 LNMO與草酸鋰粉末之表面結構分析 47 4.2.2 以PVDF 5130為黏著劑之電化學性能分析 48 4.2.3 以PVDF HSV900為黏著劑之電化學性能分析 52 4.3 NMC111添加草酸鋰進行預置鋰 56 4.3.1 NMC111與草酸鋰粉末之表面結構分析 56 4.3.2 不同草酸鋰添加量對電化學結果的影響 57 4.3.3 小結 69 4.4 電池循環過程中之產氣分析 70 4.4.1 Anode free電池中之鋰沉積表面形貌 70 4.4.2 GC-MS分析 72 4.4.3 小結 75 4.5 熱形成對電池壽命的影響 76 4.5.1 在50 ℃環境下進行高溫充電並持壓 76 4.5.2 在50 ℃環境下進行高溫充放電 79 4.5.3 於40 ℃高溫靜置後再進行充放電 84 4.5.4 小結 87 第 5 章 結論 89 第 6 章 未來展望 90 第 7 章 參考文獻 92

    1. American Chemical Society National Historic Chemical Landmarks. Columbia Dry Cell Battery. ACS Style.
    2. Zhang, X.-Q., X. Chen, X.-B. Cheng, B.-Q. Li, X. Shen, C. Yan, J.-Q. Huang and Q. Zhang, Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie International Edition, 2018. 57(19): p. 5301-5305.
    3. Kang, I.S., Y.-S. Lee and D.-W. Kim, Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2013. 161(1): p. A53-A57.
    4. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    5. Yoshino, A., The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 2012. 51(24): p. 5798-5800.
    6. Goodenough, J.B. and K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 2013. 135(4): p. 1167-1176.
    7. Crabtree, G., E. Kócs and L. Trahey, The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 2015. 40(12): p. 1067-1078.
    8. Chen, R., T. Zhao, X. Zhang, L. Li and F. Wu, Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horizons, 2016. 1(6): p. 423-444.
    9. Zhou, J. and P.H.L. Notten, Studies on the degradation of Li-ion batteries by the use of microreference electrodes. Journal of Power Sources, 2008. 177(2): p. 553-560.
    10. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
    11. Julien, C.M., A. Mauger, K. Zaghib and H. Groult, Comparative issues of cathode materials for Li-ion batteries. Inorganics, 2014. 2(1): p. 132-154.
    12. Nitta, N., F. Wu, J.T. Lee and G. Yushin, Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    13. Yamada, A., S.C. Chung and K. Hinokuma, Optimized LiFePO4 for Lithium Battery Cathodes. Journal of The Electrochemical Society, 2001. 148(3): p. A224.
    14. Rougier, A., P. Gravereau and C. Delmas, Optimization of the Composition of the Li1−zNi1+zO2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies. Journal of The Electrochemical Society, 1996. 143(4): p. 1168-1175.
    15. Arai, H., S. Okada, Y. Sakurai and J.-i. Yamaki, Thermal behavior of Li1−yNiO2 and the decomposition mechanism. Solid State Ionics, 1998. 109(3-4): p. 295-302.
    16. Kalyani, P. and N. Kalaiselvi, Various aspects of LiNiO2 chemistry: A review. Science and Technology of Advanced Materials, 2005. 6(6): p. 689-703.
    17. Gu, M., I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D.R. Baer and J.-G. Zhang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS nano, 2013. 7(1): p. 760-767.
    18. Tu, J., X.B. Zhao, G.S. Cao, D.G. Zhuang, T.J. Zhu and J.P. Tu, Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method. Electrochimica Acta, 2006. 51(28): p. 6456-6462.
    19. Ceder, G., The Stability of Orthorhombic and Monoclinic-Layered LiMnO2. Electrochemical and Solid-State Letters, 1999. 2(11): p. 550.
    20. Jang, Y.I., B. Huang, Y.M. Chiang and D.R. Sadoway, Stabilization of LiMnO2 in the α‐NaFeO2 Structure Type by LiAlO2 Addition. Electrochemical and Solid State Letters, 1998. 1(1): p. 13.
    21. Yunjian, L., L. Xinhai, G. Huajun, W. Zhixing, H. Qiyang, P. Wenjie and Y. Yong, Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. Journal of Power Sources, 2009. 189(1): p. 721-725.
    22. Liu, Z., A. Yu and J.Y. Lee, Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries. Journal of Power Sources, 1999. 81-82: p. 416-419.
    23. Yabuuchi, N. and T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 2003. 119-121: p. 171-174.
    24. Schipper, F., E.M. Erickson, C. Erk, J.-Y. Shin, F.F. Chesneau and D. Aurbach, Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. Journal of The Electrochemical Society, 2016. 164(1): p. A6220-A6228.
    25. Rossen, E., C.D.W. Jones and J.R. Dahn, Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics, 1992. 57(3): p. 311-318.
    26. Manthiram, A., K. Chemelewski and E.-S. Lee, A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy & Environmental Science, 2014. 7(4): p. 1339-1350.
    27. Fang, M.-D., T.-H. Ho, J.-P. Yen, Y.-R. Lin, J.-L. Hong, S.-H. Wu and J.-J. Jow, Preparation of Advanced Carbon Anode Materials from Mesocarbon Microbeads for Use in High C-Rate Lithium Ion Batteries. Materials, 2015. 8(6): p. 3550-3561.
    28. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): p. 4303-4418.
    29. Zubi, G., R. Dufo-López, M. Carvalho and G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
    30. Lin, D., Y. Liu and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017. 12(3): p. 194-206.
    31. Fang, C., X. Wang and Y.S. Meng, Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 2019. 1(2): p. 152-158.
    32. Betz, J., G. Bieker, P. Meister, T. Placke, M. Winter and R. Schmuch, Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Advanced Energy Materials, 2019. 9(6): p. 1803170.
    33. Nanda, S., A. Gupta and A. Manthiram, Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Advanced Energy Materials, 2020: p. 2000804.
    34. Bai, P., J. Li, F.R. Brushett and M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science, 2016. 9(10): p. 3221-3229.
    35. Fang, C., J. Li, M. Zhang, Y. Zhang, F. Yang, J.Z. Lee, M.H. Lee, J. Alvarado, M.A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang and Y.S. Meng, Quantifying inactive lithium in lithium metal batteries. Nature, 2019. 572(7770): p. 511-515.
    36. Weber, R., J.-H. Cheng, A.J. Louli, M. Coon, S. Hy and J.R. Dahn, Surface Area of Lithium-Metal Electrodes Measured by Argon Adsorption. Journal of The Electrochemical Society, 2019. 166(14): p. A3250-A3253.
    37. Scott, M.G., Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li-Ion Cell. Journal of The Electrochemical Society, 1998. 145(5): p. 1506.
    38. Holtstiege, F., A. Wilken, M. Winter and T. Placke, Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017. 19(38): p. 25905-25918.
    39. Krueger, S., R. Kloepsch, J. Li, S. Nowak, S. Passerini and M. Winter, How Do Reactions at the Anode/Electrolyte Interface Determine the Cathode Performance in Lithium-Ion Batteries? Journal of The Electrochemical Society, 2013. 160(4): p. A542-A548.
    40. Shellikeri, A., V.G. Watson, D.L. Adams, E.E. Kalu, J.A. Read, T.R. Jow and J.P. Zheng, Pre-Lithiation of Carbon Anodes Using Different Lithium - Sources. ECS Transactions, 2017. 77(11): p. 293-303.
    41. Holtstiege, F., P. Bärmann, R. Nölle, M. Winter and T. Placke, Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018. 4: p. 4.
    42. Liu, N., L. Hu, M.T. McDowell, A. Jackson and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano, 2011. 5(8): p. 6487-93.
    43. Sun, H., X. He, J. Ren, J. Li, C. Jiang and C. Wan, Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochimica Acta, 2007. 52(13): p. 4312-4316.
    44. Fei, L., S.H. Yoo, R.A.R. Villamayor, B.P. Williams, S.Y. Gong, S. Park, K. Shin and Y.L. Joo, Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication. ACS Applied Materials & Interfaces, 2017. 9(11): p. 9738-9746.
    45. Wang, Y., G. Xing, Z.J. Han, Y. Shi, J.I. Wong, Z.X. Huang, K. Ostrikov and H.Y. Yang, Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014. 6(15): p. 8884-8890.
    46. Jarvis, C.R., M.J. Lain, Y. Gao and M. Yakovleva, A lithium ion cell containing a non-lithiated cathode. Journal of Power Sources, 2005. 146(1): p. 331-334.
    47. Jarvis, C.R., M.J. Lain, M.V. Yakovleva and Y. Gao, A prelithiated carbon anode for lithium-ion battery applications. Journal of Power Sources, 2006. 162(2): p. 800-802.
    48. Li, Y. and B. Fitch, Effective enhancement of lithium-ion battery performance using SLMP. Electrochemistry Communications, 2011. 13(7): p. 664-667.
    49. Forney, M.W., M.J. Ganter, J.W. Staub, R.D. Ridgley and B.J. Landi, Prelithiation of Silicon–Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP). Nano Letters, 2013. 13(9): p. 4158-4163.
    50. Zhao, H., Z. Wang, P. Lu, M. Jiang, F. Shi, X. Song, Z. Zheng, X. Zhou, Y. Fu, G. Abdelbast, X. Xiao, Z. Liu, V.S. Battaglia, K. Zaghib and G. Liu, Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design. Nano Letters, 2014. 14(11): p. 6704-6710.
    51. Cao, W.J., J.F. Luo, J. Yan, X.J. Chen, W. Brandt, M. Warfield, D. Lewis, S.R. Yturriaga, D.G. Moye and J.P. Zheng, High Performance Li-Ion Capacitor Laminate Cells Based on Hard Carbon/Lithium Stripes Negative Electrodes. Journal of The Electrochemical Society, 2016. 164(2): p. A93-A98.
    52. Yan, J., W.J. Cao and J.P. Zheng, Constructing High Energy and Power Densities Li-Ion Capacitors Using Li Thin Film for Pre-Lithiation. Journal of The Electrochemical Society, 2017. 164(9): p. A2164-A2170.
    53. Schmuch, R., R. Wagner, G. Hörpel, T. Placke and M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 2018. 3(4): p. 267-278.
    54. Peramunage, D., Preparation and Electrochemical Characterization of Overlithiated Spinel LiMn2O4. Journal of The Electrochemical Society, 1998. 145(4): p. 1131.
    55. Tarascon, J.M., Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathodes (0 ≤ x ≤ 1) and Carbon Anodes. Journal of The Electrochemical Society, 1991. 138(10): p. 2864.
    56. Wu, Y., T. Momma, S. Ahn, T. Yokoshima, H. Nara and T. Osaka, On-site chemical pre-lithiation of S cathode at room temperature on a 3D nano-structured current collector. Journal of Power Sources, 2017. 366: p. 65-71.
    57. Kim, H.J., S. Choi, S.J. Lee, M.W. Seo, J.G. Lee, E. Deniz, Y.J. Lee, E.K. Kim and J.W. Choi, Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Letters, 2016. 16(1): p. 282-288.
    58. Sun, Y., H.-W. Lee, Z.W. Seh, N. Liu, J. Sun, Y. Li and Y. Cui, High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy, 2016. 1(1): p. 15008.
    59. Abouimrane, A., Y. Cui, Z. Chen, I. Belharouak, H.B. Yahia, H. Wu, R. Assary, L.A. Curtiss and K. Amine, Enabling high energy density Li-ion batteries through Li2O activation. Nano Energy, 2016. 27: p. 196-201.
    60. Bie, Y., J. Yang, J. Wang, J. Zhou and Y. Nuli, Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chemical Communications, 2017. 53(59): p. 8324-8327.
    61. Shanmukaraj, D., S. Grugeon, S. Laruelle, G. Douglade, J.-M. Tarascon and M. Armand, Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries. Electrochemistry Communications, 2010. 12(10): p. 1344-1347.
    62. Sun, Y., H.-W. Lee, Z.W. Seh, G. Zheng, J. Sun, Y. Li and Y. Cui, Lithium Sulfide/Metal Nanocomposite as a High-Capacity Cathode Prelithiation Material. Advanced Energy Materials, 2016. 6(12): p. 1600154.
    63. Zhan, Y., H. Yu, L. Ben, Y. Chen and X. Huang, Using Li2S to Compensate for the Loss of Active Lithium in Li-ion Batteries. Electrochimica Acta, 2017. 255: p. 212-219.
    64. Solchenbach, S., M. Wetjen, D. Pritzl, K.U. Schwenke and H.A. Gasteiger, Lithium Oxalate as Capacity and Cycle-Life Enhancer in LNMO/Graphite and LNMO/SiG Full Cells. Journal of The Electrochemical Society, 2018. 165(3): p. A512-A524.
    65. Su, X., C. Lin, X. Wang, V.A. Maroni, Y. Ren, C.S. Johnson and W. Lu, A new strategy to mitigate the initial capacity loss of lithium ion batteries. Journal of Power Sources, 2016. 324: p. 150-157.
    66. Kim, M.G. and J. Cho, Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. Journal of Materials Chemistry, 2008. 18(48): p. 5880-5887.
    67. Park, H., T. Yoon, Y.-U. Kim, J.H. Ryu and S.M. Oh, Li2NiO2 as a sacrificing positive additive for lithium-ion batteries. Electrochimica Acta, 2013. 108: p. 591-595.
    68. Noh, M. and J. Cho, Role of Li6CoO4 Cathode Additive in Li-Ion Cells Containing Low Coulombic Efficiency Anode Material. Journal of The Electrochemical Society, 2012. 159(8): p. A1329-A1334.
    69. Park, K., B.-C. Yu and J.B. Goodenough, Li3N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries. Advanced Energy Materials, 2016. 6(10): p. 1502534.
    70. Sun, Y., Y. Li, J. Sun, Y. Li, A. Pei and Y. Cui, Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Materials, 2017. 6: p. 119-124.
    71. Sun, Y., H.-W. Lee, G. Zheng, Z.W. Seh, J. Sun, Y. Li and Y. Cui, In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Nano Letters, 2016. 16(2): p. 1497-1501.
    72. Gregory, D.H., Lithium nitrides as sustainable energy materials. The Chemical Record, 2008. 8(4): p. 229-239.
    73. Vetter, J., M. Holzapfel, A. Wuersig, W. Scheifele, J. Ufheil and P. Novák, In situ study on CO2 evolution at lithium-ion battery cathodes. Journal of Power Sources, 2006. 159(1): p. 277-281.
    74. Reyntjens, S. and R. Puers, A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 2001. 11(4): p. 287-300.
    75. Marturi, N., Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. 2013.
    76. Kot, M., In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM. 2014.
    77. Genovese, M., A.J. Louli, R. Weber, C. Martin, T. Taskovic and J.R. Dahn, Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of The Electrochemical Society, 2019. 166(14): p. A3342-A3347.

    無法下載圖示 全文公開日期 2025/08/27 (校內網路)
    全文公開日期 2025/08/27 (校外網路)
    全文公開日期 2025/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE