簡易檢索 / 詳目顯示

研究生: Semaw Kebede Merso
Semaw Kebede Merso
論文名稱: 無陽極金屬電池之銅集流體表面修飾用以抑制鋰枝晶生長並穩定固態電解質界面
Copper Current Collector Surface Modification for Suppressing the Li Dendrite Growth and Stabilizing the Solid Electrolyte Interphase of Anode-Free Lithium Metal Batteries
指導教授: 黃炳照
Bing-Joe Hwang
牟中原
Chung-Yuan Mou
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
王迪彥
Di-Yan Wang
牟中原
Chung-Yuan Mou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 205
中文關鍵詞: 無陽極SrF2 納米顆粒雙功能界面層鋰成核富含 LiF 的 SEILi-Sr 合金鋰枝晶生長固態電解液界面無陽極袋式電池緻密沉積SrF2/PVDF-HFPLi-Sr/Li-Sn 合金GaN/PVDF-HFPLi-Ga 合金Li3N 富含的 SEI
外文關鍵詞: anode-free, SrF2 nanoparticles, bifunctional interfacial layer, Li nucleation, LiF-rich SEI, Li-Sr alloy, Lithium dendrite growth, solid electrolyte interphase, anode-free pouch cells, compact deposition, SrF2/PVDF-HFP, Li-Sr/Li-Sn alloys, GaN/PVDF-HFP, Li-Ga alloy, Li3N-rich SEI
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    鋰金屬因其極高的理論比容量(3860 mAh g-1)、最低的氧化還原電位(-3.04 V vs. 標準氫電極)和輕量化的密度(0.534 g cm-3)而被視為未來最具潛力的陰極材料之一。然而,鋰金屬直接作為陰極的應用通常受到安全性問題、鋰枝晶生長、鋰金屬反應性強、體積變化大、固態電解質界面不穩定、持續腐蝕、短路和循環壽命短等挑戰的限制。除了追求更高能量密度外,鋰金屬的固有挑戰也促使研究人員設計了無陽極(最初無鋰)可充電鋰金屬電池(AFLMBs)於「零過剩鋰」的概念。無陽極鋰金屬電池因其極高的能量密度,因在陽極無初始鋰的簡易結構而受到關注,降低了電池重量,簡化了製造過程,並解決了安全性問題。然而,由於裸銅表面的疏水和非均勻特性,直接在其上沉積鋰會遇到高的成核能障,導致循環過程中鋰的非均勻沉積和嚴重的鋰枝晶生長。此外,AFLMBs由於電解液分解而導致固態電解質界面(SEI)不穩定。在第一部分中,由於裸銅的疏鋰特性和循環過程中的電解液分解,AFLMBs會出現嚴重的鋰枝晶生長和不穩定的固態電解質界面。因此,本論文成功地設計了使用氟化鍶(SrF2)納米顆粒作為雙功能塗層材料(Cu@SrF2)的銅電流收集器,以實現富含LiF的SEI和Li-Sr合金複合層的雙重功能。因此,這種原位衍生的雙功能複合層具有抑制鋰枝晶生長、防止不活性鋰的形成和降低電解液分解的能力,同時通過形成Li-Sr合金層,並儲存鋰在該合金層其下沉積,由於原位衍生的界面層的協同效應,Cu@SrF2電極表面呈現出緻密且無枝晶的形態。Cu@SrF2 // NCM111無陽極電池表現出優異的性能,在60個循環中實現了其初始放電容量的51.0%,平均庫倫效率(CE)為98.6%,相較於裸銅無陽極電池(BCu // NCM111)。此外,「原位形成的雙功能界面層」的概念也在使用相同方法的鋰金屬陽極上得到證明,展示了它在鋰金屬電池中的潛在應用。SrF2包覆的鋰金屬(Li@SrF2)電極在對稱和半電池中展示了優異的高容量和高電流密度的可逆性,並在全電池(Li@SrF2 // NCM111)中表現出優越的性能。此方法同時實現了均勻的鋰成核和富含LiF的SEI層的形成,為實現AFLMBs和LMBs具有更長壽命和更高庫倫效率奠定了基礎。在第二部分中,本研究更揭露了一種雙層保護層(Cu-Sn@SFPH)電極,底層為鍍錫銅(Cu-Sn),頂層則是由聚偏二氟乙烯-共-六氟丙烯(PVDF-HFP)強化的氟化鍶(SrF2)納米顆粒。原位衍生的富含LiF的SEI是快速Li+傳輸的穩定緩衝區,而親鋰的Li-Sn和Li-Sr合金層則作為均勻Li沉積的成核種子。因此,Cu-Sn@SFPH電極表面實現了緻密且無枝晶的Li沉積。Cu-Sn@SFPH // Li電池中的Cu-Sn@SFPH電極在0.5 mA cm-2電流密度和2 mAh cm-2容量下,表現出卓越的循環穩定性,超過3200小時。Cu-Sn@SFPH // NCM111無陽極軟包電池展示出優異的性能,相較於裸銅無陽極軟包電池(Cu // NCM111),在120個循環中實現了其初始放電容量的72.1%,平均庫倫效率(CE)為99.9%,使用1.5 M LiFSI in DME/TTE(1:4體積比)作為電解質。在實際應用條件下,搭配NCM正極和稀薄電解質,這種策略為AFLMBs帶來了有前景的未來。論文的最終部分,揭露以利用PVDF-HFP增強的氮化鎵(GaN)對銅電流收集器進行改性(Cu@GNPH),以實現原位形成的離子和電子導電層,促進橫向Li沉積並穩定SEI的形成。因此,原位衍生的Li-Ga合金層促進了Li的橫向生長(不易生成枝晶),而Li3N富含的SEI層則促進了均勻的離子通量和快速動力學,從而抑制了Li枝晶生長。Cu@GNPH電極由於具有親鋰性的GaN和PVDF-HFP材料的共同作用,實現了均勻且緻密的Li沉積以及長期循環穩定性。Cu@GNPH // NCM523無陽極軟包電池在1.5 M LiFSI in DME/TTE(1:4體積比)作為電解質的情況下,相較於裸銅無陽極電極軟包電池(Cu // NCM523),在100個循環中也可實現了初始放電容量的70 %,平均庫倫效率(CE)為99.8%。


    Abstract
    Lithium (Li) metal is regarded as the brightest future anode material among all candidates owning to its extraordinarily high theoretical specific capacity (3860 mAh g-1), lowest redox potential (-3.04 V vs. standard hydrogen electrode), and low gravimetric density (0.534 g cm-3). Nevertheless, the direct use of Li metal as an anode is usually impeded by safety issues, severe Li dendrite growth, harsh reactivity of Li metal, high volume change, and unstable solid electrolyte interphase, continuous corrosion, short-circuiting, and short cycle life. Aside from pursuing higher energy density, the inherent Li metal challenges triggered the researchers to design anode-free (initially Li less) rechargeable Li metal batteries (AFLMBs) that relied on the zero-excess Li concept. Anode-free lithium metal batteries have gained prominence recently because of their extremely high energy density and their simplicity in that the cells are built with no initial Li in the anode, decreasing the cell weight as well as simplifying the manufacturing process and addressing safety issues. However, because of the lithiophobic and inhomogeneous characteristics of the bare Cu surface, direct deposition of Li on it encounters a high nucleation energy barrier, resulting in non-uniform Li deposition and severe Li dendrite growth during cycling. Furthermore, the AFLMBs suffer from unstable solid electrolyte interphase (SEI) owing to electrolyte decomposition.
    In the first part, the AFLMBs suffer from severe Li dendrites growth and unstable solid electrolyte interphase because of the lithiophobic characteristics of the bare Cu and the electrolyte decomposition upon cycling, respectively. As a result, we successfully designed the Cu current collector using strontium fluoride (SrF2) nanoparticles as bifunctional coating material (Cu@SrF2) to achieve the dual function of LiF-rich SEI and Li-Sr alloy composite layer upon plating. Thus, the in-situ derived dual-functional composite layer demonstrates the ability to inhibit the growth of Li dendrites while preventing the formation of inactive Li and decomposition of electrolyte, as well as storing Li via the formation of the Li-Sr alloy layer and enabling Li to deposit beneath it. Because of the synergetic effect of the in-situ derived interfacial layer, the Cu@SrF2 electrode surface attains compact and dendrite-free morphology. The Cu@SrF2 electrode cell (Cu@SrF2//NCM111) demonstrates superior performance, which attains 51.0% of its initial discharge capacity with an average Coulombic efficiency (CE) of 98.6% for 60 cycles in comparison to the bare Cu electrode cell (BCu//NCM111). Furthermore, the notion of an "in-situ formed bifunctional interfacial layer" has been proven on a lithium metal anode using the same approach, demonstrating its potential applications in lithium metal batteries. The SrF2-coated Li (Li@SrF2) electrode also demonstrates excellent Li reversibility at high capacities and current densities in symmetric and half-cells, and exhibits outstanding performance in full-cells (Li@SrF2//NCM111). This approach enables both homogeneous Li nucleation and the formation of LiF-rich SEI layers at the same time, paving the way for the realization of AFLMBs and LMBs with longer lifetimes and higher CE.
    In the second part, we efficiently developed a dual-coated protective layer (Cu-Sn@SFPH) electrode with Sn-coated Cu (denoted as Cu-Sn) as a bottom layer and SrF2 nanoparticles strengthened by poly (vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) as the top layer. The in-situ derived LiF-rich SEI is a stable buffer zone for fast Li+ transfer, while the lithiophilic Li-Sn and Li-Sr alloy layers serve as nucleation seeds for uniform Li deposition. Thus, the Cu-Sn@SFPH electrode surface attains compact and dendrite-free Li deposition. The Cu-Sn@SFPH electrode cell (Cu-Sn@SFPH//Li) exhibits remarkable cyclability for over 3200 h at a current density of 0.5 mA cm–2 and capacity of 2 mAh cm–2. The Cu-Sn@SFPH electrode pouch cell (Cu-Sn@SFPH//NCM111) demonstrates outstanding performance that achieves 72.1% of its initial discharge capacity with an average CE of 99.9% for 120 cycles in comparison to the bare Cu pouch cell (Cu//NCM111) using 1.5 M LiFSI in DME/TTE (1:4 in volume) as an electrolyte. Under practical conditions, with NCM cathodes and a lean electrolyte, this strategy offers a promising future for AFLMBs.
    In the final work, we modified a Cu current collector using GaN with the integration of PVDF-HFP (Cu@GNPH) to attain the in-situ formed ionic and electronic conductive layers which promote the lateral Li deposition as well as stabilize the SEI during cycling. Thus, the in-situ derived Li-Ga alloy layer promotes the horizontal growth of Li, and the Li3N-rich SEI layer facilitates the uniform ionic flux and fast kinetics, thereby suppressing the Li dendritic growth. The Cu@GNPH electrode achieves homogenous and compact Li deposition as well as long-term cycling stability owing to the combined impact of lithiophilic GaN and PVDF-HFP materials. The anode-free pouch cell (Cu@GNPH//NCM523) of the Cu@GNPH electrode demonstrates superior performance that achieves 70 % of its initial discharge capacity with an average CE of 99.8% for 100 cycles when compared to the bare Cu electrode pouch cell (Cu//NCM523) using 1.5 M LiFSI in DME/TTE (1:4 in volume) as an electrolyte.

    Table of Contents 摘要 i Abstract iii Acknowledgments vii Table of Contents ix List of Schemes xxii List of Tables xxiii Index of Abbreviations, Nomenclatures, and Units xxv Chapter 1: General Background of the Study 1 1.1 Introduction to Energy Sources and Storage Systems 1 1.2 Rechargeable Batteries as an Electrochemical Energy Storage Device 3 Chapter 2: Challenges and Strategies for Realization of Lithium Metal Batteries 9 2.1 Fundamentals of Lithium Metal Batteries 9 2.2 Challenges of Li Metal Anode 10 2.2.1 Li Dendrite Growth and Dead Li Formation 12 2.2.2 Infinite Volume Changes 13 2.2.3 Instability of Solid Electrolyte Interphase Layers 14 2.2.4 High Reactivity of Li Metal 15 2.3 Possible Strategies to Alleviate the Issues of Lithium Metal Batteries 16 2.3.1 Designing of Artificial Protection Layers 18 2.3.1.1 Organic Polymer Coatings 18 2.3.1.2 Inorganic Coating Materials 20 2.3.1.3 Organic-Inorganic Hybrid Coating Layers 21 2.3.2 Electrode Design 23 2.3.2.1 3D Structural Hosts 24 2.3.2.2 Surface Modification with Lithiophilic Materials 25 2.3.3 Electrolyte Engineering 28 2.3.3.1 Functional Electrolyte Additives 29 2.3.3.2 Solvents and Conducting Salts 33 2.3.3.3 Solid Electrolytes 35 2.4 The Progress of Anode-Free Lithium Metal Batteries 38 2.5 Motivation and Objectives of the Study 52 2.5.1 Motivation 52 2.5.2 Objectives of the Study 53 Chapter 3: Experimental Section 55 3.1 Chemicals and Reagents 55 3.2 Synthesis of SrF2 Nanoparticles 57 3.3 Electrode Preparation 58 3.3.1 Cu Current Collector Preparation 58 3.3.2 Fabrication of SrF2-Coated Cu Electrode 58 3.3.3 Fabrication of SrF2-coated Li Metal Anode 59 3.3.4 Fabrication of Sn-Coated Cu and SrF2/PVDF-HFP-Coated Sn-Cu Electrodes 59 3.3.5 Fabrication of GaN/PVDF-HFP-Coated Cu Electrode 60 3.3.6 Cathode Preparation 61 3.4 Electrolyte Preparation 61 3.5 Electrochemical Measurements 62 3.6 Materials Characterization 64 Chapter 4: An In-Situ Formed Bifunctional Layer for Suppressing the Li Dendrite Growth and Stabilizing the Solid Electrolyte Interphase Layer of Anode-Free Lithium Metal Batteries 67 4.1 Introduction 67 4.2 Results and Discussion 70 4.2.1 Characterization of As-Synthesized Materials 70 4.2.2 Characterization of Electrodes 72 4.2.3 Interfacial Composite Layer Formation During Cycling 75 4.2.4 Electrochemical Stability of Electrodes 80 4.2.5 Morphological Evaluation of Electrodes 83 4.2.6 Performance and Electrochemical Impedance Spectroscopy Evaluation of the Cu@SrF2 Electrodes in Anode-Free Cells 89 4.2.7 The Potential Applicability of SrF2 Nanoparticles in Lithium Metal Batteries 92 4.2.7.1 Performance Evaluation of Li@SrF2 Electrodes 92 4.2.7.2 Morphological Evaluation of the Li@SrF2 Electrodes 95 4.2.7.3 Interfacial Layers Formation in Li@SrF2 Electrodes 96 4.2.7.4 Cycling Stability of Li@SrF2 Electrodes 99 4.3 Summary 105 Chapter 5: Multiple Protective Layers for Suppressing Li Dendrite Growth and Improving the Cycle Life of Anode-Free Lithium Metal Batteries 107 5.1 Introduction 107 5.2 Results and Discussion 110 5.2.1 Fabrication and Characterization of the Electrodes 110 5.2.2 Multiple Layer Formation 112 5.2.3 Cycling Stability of Electrodes 117 5.2.4 Morphological Evolution of the Electrodes 120 5.2.5 Electrochemical Performance of Electrodes in Pouch-Type Cells 122 5.3 Summary 127 Chapter 6: Lithiophilic and Li3N-rich SEI Composite Layers for Inhibiting the Growth of Li Dendrites and Long-Life Pouch Cells in Anode-Free Lithium Metal Batteries 129 6.1 Introduction 129 6.2 Results and Discussion 132 6.2.1 Preparation and Characterization of the Electrodes 132 6.2.2 In-Situ Composite Layer Formation 133 6.2.3 Electrochemical Stability of Electrodes 136 6.2.4 Morphological Evaluation of Electrodes 138 6.2.5 Electrochemical Performance of Electrodes in Pouch-Type Cells 141 6.3 Summary 145 Chapter 7: Conclusions and Future Perspectives 147 7.1 Conclusions 147 7.2 Future Perspectives 149 References 151 List of Publication 173

    References
    [1] R.A. Salim, K. Hassan, S. Shafiei, Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries, Energy Econ., 44 (2014) 350-360.
    [2] S. Shafiee, E. Topal, When will fossil fuel reserves be diminished?, Energy Policy, 37 (2009) 181-189.
    [3] S.C. Bhattacharya, Biomass energy in Asia: a review of status, technologies and policies in Asia, Energy for Sustainable Development, 6 (2002) 5-10.
    [4] N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513-1524.
    [5] M. Cheng, Y. Zhu, management, The state of the art of wind energy conversion systems and technologies: A review, Energy Convers. Manag., 88 (2014) 332-347.
    [6] F.M. Guangul, G.T. Chala, Solar energy as renewable energy source: SWOT analysis, in: 2019 4th MEC international conference on big data and smart city (ICBDSC), IEEE, 2019, pp. 1-5.
    [7] I. Yüksel, Hydropower for sustainable water and energy development, Renew. Sust. Energ. Rev., 14 (2010) 462-469.
    [8] E. Barbier, Geothermal energy technology and current status: an overview, Renew. Sust. Energ. Rev., 6 (2002) 3-65.
    [9] N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors, Angew. Chem. Int. Ed., 51 (2012) 9994-10024.
    [10] J. Wu, J. Yang, Z.Y. Leong, F. Zhang, H. Deng, G.F. Ouyang, J. Yu, A Method to Inhibit Disproportionation of Mn3+ for Low-Cost Mn–Fe All-Flow Battery, ACS Applied Energy Materials, 5 (2022) 14646-14651.
    [11] R.J. Brodd, K.R. Bullock, R.A. Leising, R.L. Middaugh, J.R. Miller, E. Takeuchi, Batteries, 1977 to 2002, J. Electrochem. Soc., 151 (2004) K1.
    [12] M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems, Renewable and Sustainable Energy Reviews, 75 (2017) 1187-1197.
    [13] B. Scrosati, History of lithium batteries, J. Solid State Electrochem., 15 (2011) 1623-1630.
    [14] J. Stenhouse, X. On chloropicrine, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33 (1848) 53-57.
    [15] B. Scrosati, History of lithium batteries, Journal of Solid State Electrochemistry, 15 (2011) 1623-1630.
    [16] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [17] P. Kurzweil, Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery, J. Power Sources, 195 (2010) 4424-4434.
    [18] P. Kurzweil, Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery, J. Power Sources, 195 (2010) 4424-4434.
    [19] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries, Adv. Mater., 10 (1998) 725-763.
    [20] D.W. Murphy, J.N. Carides, Low Voltage Behavior of Lithium/Metal Dichalcogenide Topochemical Cells, J. Electrochem. Soc., 126 (1979) 349.
    [21] M. Lazzari, B. Scrosati, A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes, J. Electrochem. Soc., 127 (1980) 773.
    [22] J.J. Auborn, Y.L. Barberio, Lithium Intercalation Cells Without Metallic Lithium: and, J. Electrochem. Soc., 134 (1987) 638.
    [23] Y. Zhang, O.I. Malyi, Y. Tang, J. Wei, Z. Zhu, H. Xia, W. Li, J. Guo, X. Zhou, Z. Chen, Reducing the charge carrier transport barrier in functionally layer‐graded electrodes, Angew. Chem., 129 (2017) 15043-15048.
    [24] J.-K. Park, Principles and applications of lithium secondary batteries, John Wiley & Sons, 2012.
    [25] Y. Cheng, J. Chen, Y. Chen, X. Ke, J. Li, Y. Yang, Z. Shi, Lithium Host:Advanced architecture components for lithium metal anode, Energy Storage Materials, 38 (2021) 276-298.
    [26] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage, Nature Materials, 11 (2012) 19-29.
    [27] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature Nanotechnology, 12 (2017) 194-206.
    [28] W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin, Y.H. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7 (2014) 513-537.
    [29] X. He, D. Bresser, S. Passerini, F. Baakes, U. Krewer, J. Lopez, C.T. Mallia, Y. Shao-Horn, I. Cekic-Laskovic, S. Wiemers-Meyer, F.A. Soto, V. Ponce, J.M. Seminario, P.B. Balbuena, H. Jia, W. Xu, Y. Xu, C. Wang, B. Horstmann, R. Amine, C.-C. Su, J. Shi, K. Amine, M. Winter, A. Latz, R. Kostecki, The passivity of lithium electrodes in liquid electrolytes for secondary batteries, Nat. Rev. Mater., 6 (2021) 1036-1052.
    [30] F. Wu, G. Yushin, Conversion cathodes for rechargeable lithium and lithium-ion batteries, Energy and Environmental Science, 10 (2017) 435-459.
    [31] R. Wang, W. Cui, F. Chu, F. Wu, Lithium metal anodes: Present and future, Journal of Energy Chemistry, 48 (2020) 145-159.
    [32] L. Zhang, C. Zhu, S. Yu, D. Ge, H. Zhou, Status and challenges facing representative anode materials for rechargeable lithium batteries, J. Energy Chem., 66 (2022) 260-294.
    [33] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12 (2017) 194-206.
    [34] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chem. Rev., 117 (2017) 10403-10473.
    [35] H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli, J. Wang, Recent progress and perspective on lithium metal anode protection, Energy Storage Materials, 14 (2018) 199-221.
    [36] F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev., 49 (2020) 1569-1614.
    [37] R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces, Chem. Rev., 120 (2020) 6820-6877.
    [38] X. Guan, A. Wang, S. Liu, G. Li, F. Liang, Y.W. Yang, X. Liu, J. Luo, Controlling nucleation in lithium metal anodes, Small, 14 (2018) 1801423.
    [39] H. Qutaish, S.A. Han, Y. Rehman, K. Konstantinov, M.-S. Park, J. Ho Kim, Porous carbon architectures with different dimensionalities for lithium metal storage, Science and Technology of Advanced Materials, 23 (2022) 169-188.
    [40] Q. Wang, B. Liu, Y. Shen, J. Wu, Z. Zhao, C. Zhong, W. Hu, Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries, Advanced Science, 8 (2021) 2101111.
    [41] J. Wang, B. Ge, H. Li, M. Yang, J. Wang, D. Liu, C. Fernandez, X. Chen, Q. Peng, Challenges and progresses of lithium-metal batteries, Chem. Eng. J., 420 (2021) 129739.
    [42] K.N. Wood, M. Noked, N.P. Dasgupta, Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior, ACS Energy Letters, 2 (2017) 664-672.
    [43] S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B.D. Adams, C. Ma, J. Liu, J.-G. Zhang, W. Xu, Stable cycling of high-voltage lithium metal batteries in ether electrolytes, Nature Energy, 3 (2018) 739-746.
    [44] G. Xu, J. Li, C. Wang, X. Du, D. Lu, B. Xie, X. Wang, C. Lu, H. Liu, S. Dong, The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries, Angew. Chem., 133 (2021) 7849-7855.
    [45] W. Li, H. Zheng, G. Chu, F. Luo, J. Zheng, D. Xiao, X. Li, L. Gu, H. Li, X. Wei, Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation, Faraday Discuss., 176 (2014) 109-124.
    [46] S. Xiong, K. Xie, Y. Diao, X. Hong, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries, Electrochim. Acta, 83 (2012) 78-86.
    [47] Z.A. Ghazi, Z. Sun, C. Sun, F. Qi, B. An, F. Li, H.M. Cheng, Key aspects of lithium metal anodes for lithium metal batteries, Small, 15 (2019) 1900687.
    [48] M.S. Whittingham, History, Evolution, and Future Status of Energy Storage, Proceedings of the IEEE, 100 (2012) 1518-1534.
    [49] Y. Li, Y. Li, Y. Sun, B. Butz, K. Yan, A.L. Koh, J. Zhao, A. Pei, Y. Cui, Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments, Nano Lett., 17 (2017) 5171-5178.
    [50] D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions, J. Electrochem. Soc., 134 (1987) 1611.
    [51] X. Chen, H.-R. Li, X. Shen, Q. Zhang, The Origin of the Reduced Reductive Stability of Ion–Solvent Complexes on Alkali and Alkaline Earth Metal Anodes, Angew. Chem. Int. Ed., 57 (2018) 16643-16647.
    [52] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting, Angew. Chem. Int. Ed., 53 (2014) 3151-3157.
    [53] C. Zhu, R.E. Usiskin, Y. Yu, J. Maier, The nanoscale circuitry of battery electrodes, Science, 358 (2017) eaao2808.
    [54] Y.G. Guo, Y.S. Hu, W. Sigle, J. Maier, Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks, Adv. Mater., 19 (2007) 2087-2091.
    [55] Y. Yu, L. Gu, C. Zhu, P.A. van Aken, J. Maier, Tin Nanoparticles Encapsulated in Porous Multichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning and Application as Anode Material for High-Performance Li-Based Batteries, Journal of the American Chemical Society, 131 (2009) 15984-15985.
    [56] W.J. Lee, U.N. Maiti, J.M. Lee, J. Lim, T.H. Han, S.O. Kim, Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications, Chem. Commun., 50 (2014) 6818-6830.
    [57] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science, 334 (2011) 75-79.
    [58] F. Wu, E. Zhao, D. Gordon, Y. Xiao, C. Hu, G. Yushin, Infiltrated Porous Polymer Sheets as Free-Standing Flexible Lithium-Sulfur Battery Electrodes, Adv. Mater., 28 (2016) 6365-6371.
    [59] C. Pfaffenhuber, M. Göbel, J. Popovic, J. Maier, Soggy-sand electrolytes: status and perspectives, Physical Chemistry Chemical Physics, 15 (2013) 18318-18335.
    [60] P. Hundekar, R. Jain, A.S. Lakhnot, N. Koratkar, Recent advances in the mitigation of dendrites in lithium-metal batteries, J. Appl. Phys., 128 (2020) 010903.
    [61] N.-W. Li, Y.-X. Yin, C.-P. Yang, Y.-G. Guo, An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes, Adv. Mater., 28 (2016) 1853-1858.
    [62] L. Fan, H.L. Zhuang, L. Gao, Y. Lu, L.A. Archer, Regulating Li deposition at artificial solid electrolyte interphases, Journal of Materials Chemistry A, 5 (2017) 3483-3492.
    [63] D. Zhou, R.L. Liu, Y.B. He, F.Y. Li, M. Liu, B.H. Li, Q.H. Yang, Q. Cai, F.Y. Kang, SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life, Adv. Energy Mater., 6 (2016) 1502214.
    [64] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1 (2016) 16030.
    [65] C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nature Communications, 6 (2015) 8058.
    [66] X. Ji, D.-Y. Liu, D.G. Prendiville, Y. Zhang, X. Liu, G.D. Stucky, Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition, Nano Today, 7 (2012) 10-20.
    [67] K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nature Energy, 1 (2016) 16010.
    [68] D. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nature Nanotechnology, 11 (2016) 626-632.
    [69] D. Xie, H.H. Li, W.Y. Diao, R. Jiang, F.Y. Tao, H.Z. Sun, X.L. Wu, J.P. Zhang, Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode, Energy Storage Mater., 36 (2021) 504-513.
    [70] E. Peled, D. Golodnitsky, G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, J. Electrochem. Soc., 144 (1997) L208.
    [71] X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode, Nature Energy, 2 (2017) 17119.
    [72] B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, J. Zhu, Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes, Adv. Mater., 29 (2017) 1603755.
    [73] L. Qi, L. Shang, K. Wu, L. Qu, H. Pei, W. Li, L. Zhang, Z. Wu, H. Zhou, N.B. McKeown, W. Zhang, Z. Yang, An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes, Chemistry – A European Journal, 25 (2019) 12052-12057.
    [74] D. Kang, S. Sardar, R. Zhang, H. Noam, J. Chen, L. Ma, W. Liang, C. Shi, J.P. Lemmon, In-situ organic SEI layer for dendrite-free lithium metal anode, Energy Storage Materials, 27 (2020) 69-77.
    [75] Y. Sun, Y. Zhao, J. Wang, J. Liang, C. Wang, Q. Sun, X. Lin, K.R. Adair, J. Luo, D. Wang, R. Li, M. Cai, T.-K. Sham, X. Sun, A Novel Organic “Polyurea” Thin Film for Ultralong-Life Lithium-Metal Anodes via Molecular-Layer Deposition, Adv. Mater., 31 (2019) 1806541.
    [76] K. Liu, A. Pei, H.R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C. Liu, P.-c. Hsu, Z. Bao, Y. Cui, Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer, Journal of the American Chemical Society, 139 (2017) 4815-4820.
    [77] C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes, Adv. Funct. Mater., 32 (2022) 2107249.
    [78] D. Gao, S. Deng, X. Li, Y. Zhang, T. Lv, Y. He, W. Mao, H. Yang, J. Zhang, P.K. Chu, K. Huo, Lithiophilic and conductive framework of 2D MoN nanosheets enabling planar lithium plating for dendrite-free and minimum-volume-change lithium metal anodes, Chem. Eng. J., 454 (2023) 140144.
    [79] C. Gao, Q. Dong, G. Zhang, H. Fan, H. Li, B. Hong, Y. Lai, Antimony-Doped Lithium Phosphate Artificial Solid Electrolyte Interphase for Dendrite-Free Lithium-Metal Batteries, ChemElectroChem, 6 (2019) 1134-1138.
    [80] Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Adv. Mater., 29 (2017) 1605531.
    [81] Y. Zhao, M. Amirmaleki, Q. Sun, C. Zhao, A. Codirenzi, L.V. Goncharova, C. Wang, K. Adair, X. Li, X. Yang, F. Zhao, R. Li, T. Filleter, M. Cai, X. Sun, Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode, Matter, 1 (2019) 1215-1231.
    [82] N.A. Sahalie, Z.T. Wondimkun, W.-N. Su, M.A. Weret, F.W. Fenta, G.B. Berhe, C.-J. Huang, Y.-C. Hsu, B.J. Hwang, Multifunctional properties of Al2O3/polyacrylonitrile composite coating on Cu to suppress dendritic growth in anode-free Li-metal battery, ACS Applied Energy Materials, 3 (2020) 7666-7679.
    [83] Z.T. Wondimkun, W.A. Tegegne, J. Shi-Kai, C.-J. Huang, N.A. Sahalie, M.A. Weret, J.-Y. Hsu, P.-L. Hsieh, Y.-S. Huang, S.-H. Wu, W.-N. Su, B.J. Hwang, Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries, Energy Storage Materials, 35 (2021) 334-344.
    [84] B. Horstmann, J. Shi, R. Amine, M. Werres, X. He, H. Jia, F. Hausen, I. Cekic-Laskovic, S. Wiemers-Meyer, J. Lopez, D. Galvez-Aranda, F. Baakes, D. Bresser, C.-C. Su, Y. Xu, W. Xu, P. Jakes, R.-A. Eichel, E. Figgemeier, U. Krewer, J.M. Seminario, P.B. Balbuena, C. Wang, S. Passerini, Y. Shao-Horn, M. Winter, K. Amine, R. Kostecki, A. Latz, Strategies towards enabling lithium metal in batteries: interphases and electrodes, Energy & Environmental Science, 14 (2021) 5289-5314.
    [85] J.H. Um, K. Kim, J. Park, Y.-E. Sung, S.-H. Yu, Revisiting the strategies for stabilizing lithium metal anodes, Journal of Materials Chemistry A, 8 (2020) 13874-13895.
    [86] Q. Yun, Y.-B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.-H. Yang, Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes, Adv. Mater., 28 (2016) 6932-6939.
    [87] Z. Lyu, G.J.H. Lim, R. Guo, Z. Pan, X. Zhang, H. Zhang, Z. He, S. Adams, W. Chen, J. Ding, J. Wang, 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability, Energy Storage Materials, 24 (2020) 336-342.
    [88] W. Jia, Z. Wang, J. Li, X. Yu, Y. Wei, Z. Yao, Y. Liu, Y. Wang, A. Zhou, W. Zou, F. Zhou, H. Li, A dual-phase Li–Ca alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance, Journal of Materials Chemistry A, 7 (2019) 22377-22384.
    [89] D. Tang, L. Yuan, Y. Liao, W. Jin, J. Chen, Z. Cheng, X. Li, B. He, Z. Li, Y. Huang, Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector, Science China Materials, 65 (2022) 2385-2392.
    [90] B. Yu, T. Tao, S. Mateti, S. Lu, Y. Chen, Nanoflake Arrays of Lithiophilic Metal Oxides for the Ultra-Stable Anodes of Lithium-Metal Batteries, Adv. Funct. Mater., 28 (2018) 1803023.
    [91] Y. Gu, H.-Y. Xu, X.-G. Zhang, W.-W. Wang, J.-W. He, S. Tang, J.-W. Yan, D.-Y. Wu, M.-S. Zheng, Q.-F. Dong, B.-W. Mao, Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes, Angew. Chem. Int. Ed., 58 (2019) 3092-3096.
    [92] X.-B. Cheng, T.-Z. Hou, R. Zhang, H.-J. Peng, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries, Adv. Mater., 28 (2016) 2888-2895.
    [93] G. Wang, X. Xiong, P. Zou, X. Fu, Z. Lin, Y. Li, Y. Liu, C. Yang, M. Liu, Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes, Chem. Eng. J., 378 (2019) 122243.
    [94] X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Electrolyte for lithium protection: From liquid to solid, Green Energy & Environment, 4 (2019) 360-374.
    [95] H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martínez, M. Armand, Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives, Angew. Chem. Int. Ed., 57 (2018) 15002-15027.
    [96] W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface Stability in Solid-State Batteries, Chem. Mater., 28 (2016) 266-273.
    [97] X. Shen, R. Zhang, X. Chen, X.-B. Cheng, X. Li, Q. Zhang, The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength?, Advanced Energy Materials, 10 (2020) 1903645.
    [98] Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nature Materials, 13 (2014) 961-969.
    [99] X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries, Adv. Funct. Mater., 27 (2017) 1605989.
    [100] S. Shiraishi, K. Kanamura, Z.i. Takehara, Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution‐Deposition Cycles, J. Electrochem. Soc., 146 (1999) 1633.
    [101] X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents, Nature Energy, 4 (2019) 882-890.
    [102] N. Piao, X. Ji, H. Xu, X. Fan, L. Chen, S. Liu, M.N. Garaga, S.G. Greenbaum, L. Wang, C. Wang, X. He, Countersolvent Electrolytes for Lithium-Metal Batteries, Advanced Energy Materials, 10 (2020) 1903568.
    [103] X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, K. Amine, K. Xu, C. Wang, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nature Nanotechnology, 13 (2018) 715-722.
    [104] Z. Xie, Z. Wu, X. An, X. Yue, A. Yoshida, X. Du, X. Hao, A. Abudula, G. Guan, 2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability, Chem. Eng. J., 393 (2020) 124789.
    [105] U.v. Alpen, A. Rabenau, G.H. Talat, Ionic conductivity in Li3N single crystals, Appl. Phys. Lett., 30 (1977) 621-623.
    [106] C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries, Angew. Chem. Int. Ed., 57 (2018) 14055-14059.
    [107] Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, Y. Cui, Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nature Communications, 9 (2018) 3656.
    [108] H. Ye, Y.-X. Yin, S.-F. Zhang, Y. Shi, L. Liu, X.-X. Zeng, R. Wen, Y.-G. Guo, L.-J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy, 36 (2017) 411-417.
    [109] X.-Q. Zhang, X. Chen, X.-B. Cheng, B.-Q. Li, X. Shen, C. Yan, J.-Q. Huang, Q. Zhang, Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes, Angew. Chem. Int. Ed., 57 (2018) 5301-5305.
    [110] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nature Communications, 6 (2015) 7436.
    [111] N. von Aspern, G.V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes, Angew. Chem. Int. Ed., 58 (2019) 15978-16000.
    [112] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, High rate and stable cycling of lithium metal anode, Nature communications, 6 (2015) 6362.
    [113] T. Nakajima, H. Groult, Fluorinated materials for energy conversion, Elsevier, 2005.
    [114] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S, Energy & Environmental Science, 8 (2015) 1905-1922.
    [115] E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution, ACS Energy Letters, 2 (2017) 1321-1326.
    [116] E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chem. Soc. Rev., 40 (2011) 2525-2540.
    [117] L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries, Advanced Energy Materials, 8 (2018) 1702657.
    [118] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nature Reviews Materials, 2 (2017) 16103.
    [119] R. Murugan, V. Thangadurai, W. Weppner, Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12, Angew. Chem. Int. Ed., 46 (2007) 7778-7781.
    [120] K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, 3 e1601659.
    [121] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nature Energy, 1 (2016) 16030.
    [122] Z. Ma, H.-G. Xue, S.-P. Guo, Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance, Journal of Materials Science, 53 (2018) 3927-3938.
    [123] Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nature Energy, 5 (2020) 299-308.
    [124] X.-X. Zeng, Y.-X. Yin, N.-W. Li, W.-C. Du, Y.-G. Guo, L.-J. Wan, Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries, Journal of the American Chemical Society, 138 (2016) 15825-15828.
    [125] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 7 (2014) 513-537.
    [126] C. Brissot, M. Rosso, J.N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells, J. Power Sources, 81-82 (1999) 925-929.
    [127] D. Aurbach, E. Zinigrad, H. Teller, Y. Cohen, G. Salitra, H. Yamin, P. Dan, E. Elster, Attempts to Improve the Behavior of Li Electrodes in Rechargeable Lithium Batteries, J. Electrochem. Soc., 149 (2002) A1267.
    [128] J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M.F. Toney, V.V. Viswanathan, M.S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Pathways for practical high-energy long-cycling lithium metal batteries, Nature Energy, 4 (2019) 180-186.
    [129] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Anode-Free Rechargeable Lithium Metal Batteries, Adv. Funct. Mater., 26 (2016) 7094-7102.
    [130] X. Li, G. Yang, S. Zhang, Z. Wang, L. Chen, Improved lithium deposition on silver plated carbon fiber paper, Nano Energy, 66 (2019) 104144.
    [131] J.-G. Zhang, Anode-less, Nature Energy, 4 (2019) 637-638.
    [132] S. Liu, K. Jiao, J. Yan, Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries, Energy Storage Materials, 54 (2023) 689-712.
    [133] B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries, Advanced Energy Materials, 8 (2018) 1702097.
    [134] C.-J. Huang, B. Thirumalraj, H.-C. Tao, K.N. Shitaw, H. Sutiono, T.T. Hagos, T.T. Beyene, L.-M. Kuo, C.-C. Wang, S.-H. Wu, Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries, Nature Communications, 12 (2021) 1452.
    [135] B.J. Neudecker, N.J. Dudney, J.B. Bates, "Lithium-free" thin-film battery with in situ plated Li anode, J. Electrochem. Soc., 147 (2000) 517-523.
    [136] D. Wang, G. Zhong, Y. Li, Z. Gong, M.J. McDonald, J.-X. Mi, R. Fu, Z. Shi, Y. Yang, Enhanced ionic conductivity of Li3. 5Si0. 5P0. 5O4 with addition of lithium borate, Solid State Ionics, 283 (2015) 109-114.
    [137] T.T. Hagos, B. Thirumalraj, C.-J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, B.-J. Hwang, Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries, ACS Applied Materials & Interfaces, 11 (2019) 9955-9963.
    [138] T.T. Beyene, B.A. Jote, Z.T. Wondimkun, B.W. Olbassa, C.-J. Huang, B. Thirumalraj, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries, ACS Applied Materials & Interfaces, 11 (2019) 31962-31971.
    [139] J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y.S. Meng, K. Xu, Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes, Energy & Environmental Science, 12 (2019) 780-794.
    [140] R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin, I.G. Hill, J.R. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nature Energy, 4 (2019) 683-689.
    [141] A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal, Nano Lett., 17 (2017) 1132-1139.
    [142] W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang, C. Yang, Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries, Electrochemical Energy Reviews, 4 (2021) 601-631.
    [143] P. Li, H. Kim, J. Ming, H.-G. Jung, I. Belharouak, Y.-K. Sun, Quasi-compensatory effect in emerging anode-free lithium batteries, eScience, 1 (2021) 3-12.
    [144] Y. Tian, Y. An, C. Wei, H. Jiang, S. Xiong, J. Feng, Y. Qian, Recently advances and perspectives of anode-free rechargeable batteries, Nano Energy, 78 (2020) 105344.
    [145] S.S. Zhang, X. Fan, C. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochim. Acta, 258 (2017) 1201-1207.
    [146] A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10 (2018) 6125-6138.
    [147] A.A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, B.-J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale, 11 (2019) 2710-2720.
    [148] L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.-J. Huang, S.-K. Jiang, W.-N. Su, Y.-W. Yang, B.-J. Hwang, Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochim. Acta, 325 (2019)134825.
    [149] Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.-N. Su, C.-H. Wang, G. Brunklaus, M. Winter, B.-J. Hwang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries, J. Power Sources, 450 (2020) 227589.
    [150] N.T. Temesgen, W.A. Tegegne, K.N. Shitaw, F.W. Fenta, Y. Nikodimos, B.W. Taklu, S.-K. Jiang, C.-J. Huang, S.-H. Wu, W.-N. Su, B.J. Hwang, Mitigating dendrite formation and electrolyte decomposition via functional double layers coating on copper current collector in anode-free lithium metal battery, Journal of the Taiwan Institute of Chemical Engineers, 128 (2021) 87-97.
    [151] W. Chen, R.V. Salvatierra, M. Ren, J. Chen, M.G. Stanford, J.M. Tour, Laser-Induced Silicon Oxide for Anode-Free Lithium Metal Batteries, Adv. Mater., 32 (2020) 2002850.
    [152] L. Lin, L. Suo, Y.-s. Hu, H. Li, X. Huang, L. Chen, Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery, Advanced Energy Materials, 11 (2021) 2003709.
    [153] Z. Zhang, H. Luo, Z. Liu, S. Wang, X. Zhou, Z. Liu, A chemical lithiation induced Li4.4Sn lithiophilic layer for anode-free lithium metal batteries, Journal of Materials Chemistry A, 10 (2022) 9670-9679.
    [154] S.K. Merso, T.M. Tekaligne, H.H. Weldeyohannes, Y. Nikodimos, K.N. Shitaw, S.-K. Jiang, C.-J. Huang, Z.T. Wondimkun, B.A. Jote, L. Wichmann, G. Brunklaus, M. Winter, S.-H. Wu, W.-N. Su, C.-Y. Mou, B.J. Hwang, An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries, Journal of Energy Storage, 56 (2022) 105955.
    [155] J. Sun, S. Zhang, J. Li, B. Xie, J. Ma, S. Dong, G. Cui, Robust Transport: An Artificial Solid Electrolyte Interphase Design for Anode-Free Lithium-Metal Batteries, Adv. Mater., 35 (2023) 2209404.
    [156] M. Armand, J.M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657.
    [157] C. Brissot, M. Rosso, J.N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells, J. Power Sources, 81 (1999) 925-929.
    [158] M.D. Tikekar, S. Choudhury, Z.Y. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1 (2016) 1-7.
    [159] B. Liu, Y. Zhang, G.X. Pan, C.Z. Ai, S.J. Deng, S.F. Liu, Q. Liu, X.L. Wang, X.H. Xia, J.P. Tu, Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes, J. Mater. Chem. A, 7 (2019) 21794-21801.
    [160] Q. Li, S.P. Zhu, Y.Y. Lu, 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries, Adv. Funct. Mater., 27 (2017) 1606422.
    [161] R.S. Song, B. Wang, Y. Xie, T.T. Ruan, F. Wang, Y. Yuan, D.L. Wang, S.X. Dou, A 3D conductive scaffold with lithiophilic modification for stable lithium metal batteries, J. Mater. Chem. A, 6 (2018) 17967-17976.
    [162] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes, Adv. Mater., 28 (2016) 1853-1858.
    [163] Y.P. Jiang, B. Wang, P. Liu, B. Wang, Y. Zhou, D.L. Wang, H.K. Liu, S.X. Dou, Modified solid-electrolyte interphase toward stable Li metal anode, Nano Energy, 77 (2020) 105308.
    [164] H.Y. Huo, X.N. Li, Y. Chen, J.N. Liang, S.X. Deng, X.J. Gao, K. Doyle-Davis, R.Y. Li, X.X. Guo, Y. Shen, C.W. Nan, X.L. Sun, Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries, Energy Storage Mater., 29 (2020) 361-366.
    [165] X. Li, Y. Liu, Y. Pan, M.S. Wang, J.C. Chen, H. Xu, Y. Huang, W.M. Lau, A.X. Shan, J.M. Zheng, D. Mitlin, A functional SrF2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode, J. Mater. Chem. A, 7 (2019) 21349-21361.
    [166] B. Thirumalraj, T.T. Hagos, C.J. Huang, M.A. Teshager, J.H. Cheng, W.N. Su, B.J. Hwang, Nucleation and Growth Mechanism of Lithium Metal Electroplating, J. Am. Chem. Soc., 141 (2019) 18612-18623.
    [167] Y.-C. Hsieh, J.H. Thienenkamp, C.-J. Huang, H.-C. Tao, U. Rodehorst, B.J. Hwang, M. Winter, G. Brunklaus, Revealing the Impact of Film-Forming Electrolyte Additives on Lithium Metal Batteries via Solid-State NMR/MRI Analysis, J. Phys. Chem. C, 125 (2021) 252-265.
    [168] R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin, I.G. Hill, J.R. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nat. Energy, 4 (2019) 683-689.
    [169] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Anode-Free Rechargeable Lithium Metal Batteries, Adv. Funct. Mater., 26 (2016) 7094-7102.
    [170] T.T. Hagos, B. Thirumalraj, C.J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.F. Chiu, W.N. Su, B.J. Hwang, Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries, ACS Appl. Mater. Interfaces, 11 (2019) 9955-9963.
    [171] X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.C. Liou, K. Amine, K. Xu, C. Wang, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol., 13 (2018) 715-722.
    [172] N.A. Sahalie, A.A. Assegie, W.N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.J. Huang, Y.W. Yang, B.J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources, 437 (2019) 226912.
    [173] T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.J. Huang, Y.W. Yang, W.N. Su, H.J. Dai, B.J. Hwang, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries, Electrochim. Acta, 316 (2019) 52-59.
    [174] A.A. Assegie, J.H. Cheng, L.M. Kuo, W.N. Su, B.J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10 (2018) 6125-6138.
    [175] Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.J. Huang, B. Thirumalraj, B.A. Jote, D.Y. Wang, W.N. Su, C.H. Wang, G. Brunklaus, M. Winter, B.J. Hwang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries, J. Power Sources, 450 (2020) 227589.
    [176] L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.J. Huang, S.K. Jiang, W.N. Su, Y.W. Yang, B.J. Hwang, Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochim. Acta, 325 (2019) 134825.
    [177] A.A. Assegie, C.C. Chung, M.C. Tsai, W.N. Su, C.W. Chen, B.J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale, 11 (2019) 2710-2720.
    [178] W. Chen, R.V. Salvatierra, M. Ren, J. Chen, M.G. Stanford, J.M. Tour, Laser-Induced Silicon Oxide for Anode-Free Lithium Metal Batteries, Adv. Mater., 32 (2020) 2002850.
    [179] N.A. Sahalie, Z.T. Wondimkun, W.N. Su, M.A. Weret, F.W. Fenta, G.B. Berhe, C.J. Huang, Y.C. Hsu, B.J. Hwang, Multifunctional Properties of Al2O3/Polyacrylonitrile Composite Coating on Cu to Suppress Dendritic Growth in Anode-Free Li-Metal Battery, ACS Appl. Energy Mater., 3 (2020) 7666-7679.
    [180] S.S. Zhang, X.L. Fan, C.S. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochim. Acta, 258 (2017) 1201-1207.
    [181] S.S. Zhang, X.L. Fan, C.S. Wang, An in-situ enabled lithium metal battery by plating lithium on a copper current collector, Electrochem. Commun., 89 (2018) 23-26.
    [182] L.D. Lin, L.M. Suo, Y.S. Hu, H. Li, X.J. Huang, L.Q. Chen, Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery, Adv. Energy Mater., 11 (2021) 2003709.
    [183] Z.T. Wondimkun, W.A. Tegegne, J. Shi-Kai, C.J. Huang, N.A. Sahalie, M.A. Weret, J.Y. Hsu, P.L. Hsieh, Y.S. Huang, S.H. Wu, W.N. Su, B.J. Hwang, Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries, Energy Storage Mater., 35 (2021) 334-344.
    [184] J. Chen, Q. Li, T.P. Pollard, X.L. Fan, O. Borodin, C.S. Wang, Electrolyte design for Li metal-free Li batteries, Mater. Today, 39 (2020), pp. 118-126.
    [185] Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13 (2014) 961-969.
    [186] Y.X. Yuan, F. Wu, Y. Bai, Y. Li, G.H. Chen, Z.H. Wang, C. Wu, Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode, Energy Storage Mater., 16 (2019) 411-418.
    [187] C. Yan, X.B. Cheng, Y.X. Yao, X. Shen, B.Q. Li, W.J. Li, R. Zhang, J.Q. Huang, H. Li, Q. Zhang, An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode, Adv. Mater., 30 (2018) 1804461.
    [188] J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, Y. Cui, Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability, J. Am. Chem. Soc., 139 (2017) 11550-11558.
    [189] T.M. Hagos, T.T. Hagos, H.K. Bezabh, G.B. Berhe, L.H. Abrha, S.F. Chiu, C.J. Huang, W.N. Su, H.J. Dai, B.J. Hwang, Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery, ACS Appl. Energy Mater., 3 (2020) 10722-10733.
    [190] R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, Q.Q. Qiao, Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition, Nat. Commun., 11 (2020) 93.
    [191] Z.Y. Tu, S. Choudhury, M.J. Zachman, S.Y. Wei, K.H. Zhang, L.F. Kourkoutis, L.A. Archer, Fast ion transport at solid-solid interfaces in hybrid battery anodes, Nat. Energy, 3 (2018) 310-316.
    [192] Y.T. Ma, L.L. Wang, S.Y. Fu, R. Luo, W.J. Qu, X. Hu, R.J. Chen, F. Wu, L. Li, In situ formation of a Li-Sn alloy protected layer for inducing lateral growth of dendrites, J. Mater. Chem. A, 8 (2020) 23574-23579.
    [193] S. Choudhury, Z. Tu, S. Stalin, D. Vu, K. Fawole, D. Gunceler, R. Sundararaman, L.A. Archer, Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport, Angew. Chem., Int. Ed. Engl., 56 (2017), pp. 13070-13077.
    [194] F. Li, Y.H. Tan, Y.C. Yin, T.W. Zhang, L.L. Lu, Y.H. Song, T. Tian, B. Shen, Z.X. Zhu, H.B. Yao, A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes, Chem. Sci., 10 (2019) 9735-9739.
    [195] K. Yan, Z.D. Lu, H.W. Lee, F. Xiong, P.C. Hsu, Y.Z. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1 (2016) 16010.
    [196] Z.Z. Tong, B. Bazri, S.F. Hu, R.S. Liu, Interfacial chemistry in anode-free batteries: challenges and strategies, J. Mater. Chem. A, 9 (2021) 7396-7406.
    [197] X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X.Q. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode, Nat. Energy, 2 (2017) 17119.
    [198] Z.K. Wang, W.F. Han, H.Z. Liu, EDTA-assisted hydrothermal synthesis of cubic SrF2 particles and their catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride, CrystEngComm, 21 (2019) 1691-1700.
    [199] C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152 (2005) A396-A404.
    [200] R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao, C. Yan, J.Q. Huang, Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode, Adv. Funct. Mater., 28 (2018) 1705838.
    [201] V. Smetana, L. Kienle, V. Duppel, A. Simon, Synthesis, crystal structure, and TEM analysis of Sr19Li44 and Sr3Li2: a reinvestigation of the Sr-Li phase diagram, Inorg. Chem., 54 (2015) 733-739.
    [202] C. Sun, A. Lin, W. Li, J. Jin, Y. Sun, J. Yang, Z. Wen, In Situ Conversion of Cu3P Nanowires to Mixed Ion/Electron-Conducting Skeleton for Homogeneous Lithium Deposition, Adv. Energy Mater., 10 (2020) 1902989.
    [203] Q. Li, H. Pan, W. Li, Y. Wang, J. Wang, J. Zheng, X. Yu, H. Li, L. Chen, Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode, ACS Energy Lett., 3 (2018), pp. 2259-2266.
    [204] S. Liu, X. Ji, J. Yue, S. Hou, P. Wang, C. Cui, J. Chen, B. Shao, J. Li, F. Han, J. Tu, C. Wang, High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries, J. Mater. Chem. A, 142 (2020) 2438-2447.
    [205] S. Choudhury, L.A. Archer, Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities, Adv. Electron. Mater., 2 (2016) 1500246.
    [206] V. Küpers, M. Kolek, P. Bieker, M. Winter, G. Brunklaus, In situ 7Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations, Phys. Chem. Chem. Phys., 21 (2019) 26084-26094.
    [207] Y.-C. Hsieh, M. Leißing, S. Nowak, B.-J. Hwang, M. Winter, G. Brunklaus, Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy, Cell Reports Physical Science, 1 (2020) 100139.
    [208] S. Choudhury, L.A. Archer, Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities, Adv. Electron. Mater., 2 (2016) 1500246.
    [209] R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao, C. Yan, J.Q. Huang, Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode, Adv. Funct. Mater., 28 (2018), Article 1705838.
    [210] R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, F. Wu, A. Chaudhary, N. Ghimire, B. Zhou, W.-H. Zhang, Y. Zhou, Q. Qiao, Ultrathin Bilayer of Graphite/SiO2 as Solid Interface for Reviving Li Metal Anode, Adv. Energy Mater., 9 (2019) 1901486.
    [211] J.F. Qian, B.D. Adams, J.M. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S.C. Xu, J.Z. Hu, J.G. Zhang, Anode-Free Rechargeable Lithium Metal Batteries, Adv. Funct. Mater., 26 (2016) 7094-7102.
    [212] T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.J. Huang, C.H. Wang, W.N. Su, H.J. Dai, B.J. Hwang, Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries, J. Electrochem. Soc., 166 (2019) A1501-A1509.
    [213] S. Cho, D.Y. Kim, J.-I. Lee, J. Kang, H. Lee, G. Kim, D.-H. Seo, S. Park, Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries, Adv. Funct. Mater., n/a (2022) 2208629.
    [214] W. Shin, A. Manthiram, Fast and Simple Ag/Cu Ion Exchange on Cu Foil for Anode-Free Lithium-Metal Batteries, ACS Applied Materials & Interfaces, 14 (2022) 17454-17460.
    [215] C. Wu, F. Guo, L. Zhuang, X. Ai, F. Zhong, H. Yang, J. Qian, Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries, ACS Energy Letters, 5 (2020) 1644-1652.
    [216] R. Lu, A. Shokrieh, C. Li, B. Zhang, K. Amin, L. Mao, Z. Wei, PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes, Nano Energy, 95 (2022) 107009.
    [217] C. Sun, A. Lin, W. Li, J. Jin, Y. Sun, J. Yang, Z. Wen, In Situ Conversion of Cu3P Nanowires to Mixed Ion/Electron-Conducting Skeleton for Homogeneous Lithium Deposition, Adv. Energy Mater., 10 (2020), pp. 1902989.
    [218] G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula, D. Wang, L.-Q. Chen, D. Wang, Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects, Nature Energy, 3 (2018) 1076-1083.
    [219] Z. Tong, B. Bazri, S.-F. Hu, R.-S. Liu, Interfacial chemistry in anode-free batteries: challenges and strategies, Journal of Materials Chemistry A, 9 (2021) 7396-7406.
    [220] S. Nanda, A. Gupta, A. Manthiram, Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries, Advanced Energy Materials, 11 (2021) 2000804.
    [221] B. Wu, C. Chen, L.H.J. Raijmakers, J. Liu, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances, Energy Storage Materials, 57 (2023) 508-539.
    [222] H. Wu, H. Jia, C. Wang, J.G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes, Advanced Energy Materials, 11 (2021) 2003092.
    [223] T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.-J. Huang, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries, J. Electrochem. Soc., 166 (2019) A1501-A1509.
    [224] N.A. Sahalie, A.A. Assegie, W.-N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.-J. Huang, Y.-W. Yang, B.-J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources, 437 (2019) 226912.
    [225] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.G. Zhang, Anode‐free rechargeable lithium metal batteries, Adv. Funct. Mater., 26 (2016) 7094-7102.
    [226] L. Lin, L. Suo, Y.s. Hu, H. Li, X. Huang, L. Chen, Epitaxial induced plating current‐collector lasting lifespan of anode‐free lithium metal battery, Advanced Energy Materials, 11 (2021) 2003709.
    [227] X. Wang, Y. He, S. Tu, L. Fu, Z. Chen, S. Liu, Z. Cai, L. Wang, X. He, Y. Sun, Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries, Energy Storage Materials, 49 (2022) 135-143.
    [228] Z.T. Wondimkun, W.A. Tegegne, J. Shi-Kai, C.-J. Huang, N.A. Sahalie, M.A. Weret, J.-Y. Hsu, P.-L. Hsieh, Y.-S. Huang, S.-H. Wu, Highly-lithiophilic Ag@ PDA-GO film to suppress dendrite formation on Cu substrate in anode-free lithium metal batteries, Energy Storage Materials, 35 (2021) 334-344.
    [229] Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.-N. Su, C.-H. Wang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries, J. Power Sources, 450 (2020) 227589.
    [230] H. Cheng, C. Gao, N. Cai, M. Wang, Ag coated 3D-Cu foam as a lithiophilic current collector for enabling Li 2 S-based anode-free batteries, Chem. Commun., 57 (2021) 3708-3711.
    [231] J. Zhang, H. Chen, M. Wen, K. Shen, Q. Chen, G. Hou, Y. Tang, Lithiophilic 3D Copper‐Based Magnetic Current Collector for Lithium‐Free Anode to Realize Deep Lithium Deposition, Adv. Funct. Mater., 32 (2022) 2110110.
    [232] Y. Wang, J. Liang, X. Song, Z. Jin, Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes, Energy Storage Materials, 54 (2023) 732-775.
    [233] U.V. Alpen, Li3N: A promising Li ionic conductor, J. Solid State Chem., 29 (1979) 379-392.
    [234] S. Xiong, K. Xie, Y. Diao, X. Hong, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries, J. Power Sources, 246 (2014) 840-845.
    [235] U.v. Alpen, A. Rabenau, G.H. Talat, Ionic conductivity in Li3N single crystals, Appl. Phys. Lett., 30 (2008) 621-623.
    [236] B.A. Boukamp, R.A. Huggins, Fast ionic conductivity in lithium nitride, Mater. Res. Bull., 13 (1978) 23-32.

    無法下載圖示 全文公開日期 2028/07/14 (校內網路)
    全文公開日期 2028/07/14 (校外網路)
    全文公開日期 2028/07/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE