簡易檢索 / 詳目顯示

研究生: 林品伶
Pin-Ling Lin
論文名稱: 具電化學自形成式黏著添加劑開發用於矽負極鈍性膜修飾之研究
The investigation of solid electrolyte interphase of self-electrochemically forming binder addition in silicon anode material
指導教授: 王復民
Fu-Ming Wang
口試委員: 陳崇賢
楊純誠
許榮木
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 89
中文關鍵詞: 水性黏著劑添加劑鈍性膜矽負極鋰離子電池
外文關鍵詞: Aqueous binder, Additive, Solid Electrolyte Interphase, Silicon anode material, Lithium ion battery
相關次數: 點閱:310下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現階段矽基材料已成為鋰電池負極研究熱點,矽負極材料其優勢為提升鋰電池能量密度,其理論電容量高達4200 mAh,不過此材料的電化學循環壽命極差。在許多文獻研究已指出,原因來自充放電時矽本身與鋰的合金反應,而造成龐大的體積膨脹,進一步在表面形成裂縫,新的裂面則與有機溶劑再形成更多的SEI層。體積膨脹也使其電及結構機械性質弱,易造成活性物質與基材剝落,進而喪失電化學活性。因此,本研究為開發新型水性黏著劑,以聚矽氧烷(Poly(methylhydrosiloxane), PMHS) -[Si-O]-為主架構組成之聚合物,具備優異親水性、耐熱性、低收縮、柔韌性等特性,對於需具備耐熱性的鋰離子電池有其應用之優勢。並以不同相位的苯基雙馬來醯亞胺((N,N-Phenylene) dimaleimide)以及聚乙二醇甲醚(Poly(ethyl glycol) methyl ether methacrylate, PEGMEMA)合成於聚矽氧烷上。雙馬來醯亞胺結構,可形成高還原電位的高離子導電SEI,另一端則為聚乙二醇甲醚,主要以EO提供離子跳躍的平台協助離子傳輸的功能。此結構設計,期盼能藉此抑制矽基負極材料之膨脹性,使其發揮高電容量特性,並提高矽負極鋰電池之循環壽命。
    在本實驗結果中,電池性能測試方面,其添加MI4M950之添加劑,在第20圈充放電後電容量仍維持在1500 mAh/g,其結果遠優於空白組的500 mAh/g。充放電後的極片形貌測試可觀察出,其添加之極片生成物猶如珊瑚礁般,連結著粒子與粒子之間。本研究更結合了臨場電化學分析,與國家同步輻射中心合作之臨場穿透式X光顯微鏡,其高強度光源帶來的數據結果,明顯觀察出添加新型水性黏著劑其抑制矽顆粒膨脹之效果。另外,本實驗室也開發了臨場電化學傅立葉轉換紅外光光譜儀,在充放電過程中進行矽表面化學組成的分析,進而了解其表面組成的變化。


    Many researches have been found the main drawback of Si-based anode materials. It is believed to be responsible with the cracking and pulverization of silicon structure during the lithiation and delithiation process. The volume changes that can be up to ~300% compared to the original size able lead to several degradation processes such as mechanical strains, loss of electrical contact between the different anode materials, and to the current collector. Furthermore, the continuous volume change of Si can cause the cracks on the surface area. However, its practical application is limited by structure degradation.
    In this study, a new compound has been developed, which is combined with the functions of SEI formation and particle adhesion in electrode. This new technology is used to eliminate the huge irreversible reaction on first cycle and effectively extend the cycle life. The new compound was composed by the (N,N-Phenylene) dimaleimide and the Polymethylhydrosiloxane (PMHS) through Hydrosilylation reaction. The functionalized aqueous product provides three performances including excellent adhesion property with silicon particles on backbone structure, high ionic conductive SEI with high reduction potential on imide structure, and ionic hopping site on acrylate ethyl oxide side chain. It is the first time that combines binder, SEI, and ionic transfer functions in one material in order to solve the uneven distribution of electrochemical reaction on silicon particles. In addition, we anticipate that the volume expansion and irreversible reaction on silicon can be effectively eliminated by this new technology.
    According to the results, the functionalized aqueous binder additive The charging-discharging tests of the MI4M950 additive showed better perfoemance, 1000 mAh/g specific capacity at 0.2 C rate after 20 cycles. The electrode morphology test, scanning electron microscope (SEM), observed that the MI4M950 electrode surface cover by the SEI layer, the shape like a coral, which is connected between silicon particles. In this study, combined with the In-operendo TXM and In-operendo FTIR-ATR, these two powerful instruments give us more information during the C/D testing. The resultant anodes, the MI4M950 additive cell have excellent adhesion to Si micro particles and current collector, ductility and more importantly, endure dramatic volume changes of Si thereby prohibiting physical fracture during lithiation/delithiation processes.

    目錄 i 圖目錄 iv 表目錄 iv 摘要 ix Abstract x 第一章 緒論 1 1.1 前言 1 第二章 文獻回顧 4 2.1 鋰離子電池原理與介紹 4 2.1.1 正極 (陰極) 5 2.1.2 負極 (陽極) 7 2.1.3 電解液 9 2.1.4 隔離膜 11 2.2 矽負極 12 2.2.1 矽複合材料 14 2.2.2 電解液添加劑 16 2.2.3 黏著劑 20 2.3 研究設計文獻回顧 23 2.3.1 聚矽氧烷 (Poly(methylhydrosiloxane)) 23 2.3.2 聚乙二醇甲醚(Poly(ethyl glycol) methyl ether methacrylate, PEGMEMA) 24 2.3.3 苯基雙馬來酰亞胺 ((N,N-Phenylene) dimaleimide) 25 2.4 研究動機及目的 26 第三章 實驗方法與儀器設備 27 3.1 實驗藥品 27 3.2 儀器設備 28 3.3 實驗步驟 29 3.3.1 以Hydrosilylation法合成SM950聚合物 29 3.3.2 以Hydrosilylation法合成MI2M950、MI3M950、MI4M950聚合物 30 3.3.3 矽負極極片製備 31 3.4 材料合成鑑定分析 32 3.4.1 核磁共振儀分析(NMR) 32 3.4.2 傅立葉轉換紅外光光譜儀-調減全反射 (FTIR-ATR) 33 3.5 電化學性能測試 34 3.5.1 電池性能測試 (Battery test) 35 3.5.2 循環伏安法 (Cyclic Voltammetry, CV) 36 3.5.3 交流阻抗分析(Electrochemical impedance spectroscopy, EIS) 37 3.6 電極表面分析 39 3.6.1 X射線光電子能譜學(Xray photoelectron spectroscopy, XPS) 39 3.6.2 掃描電子顯微鏡(Scanning electron microscope, SEM) 40 3.6.3 穿透式X光顯微鏡 (Transmission X-ray microscope, TXM) 41 第四章 結果與討論 42 4.1 材料的合成鑑定與分析 43 4.1.1 Fourier transform infrared spectroscopy (FTIR) -ATR 43 4.1.2 Nuclear magnetic resonance spectroscopy (NMR) 47 4.2 電化學特性分析 51 4.2.1 電池性能測試 (Battery test) 51 4.2.2 循環伏安法(Cycle voltammetry, CV) 54 4.2.3 交流阻抗分析(Electrochemical impedance spectroscopy, EIS) 57 4.2.4 X射線光電子能譜學(X-ray photoelectron spectroscopy, XPS) 61 4.2.5 掃描電子顯微鏡(Scanning electron microscope, SEM) 68 4.3 臨場電化學分析 70 4.3.1 臨場穿透式X光顯微鏡 (In-operendo Transmission X-ray microscope, In-operendo TXM) 70 4.3.2 臨場傅立葉轉換紅外光光譜儀( In-operendo FTIR-ATR ) 75 第五章 結論 84 第六章 未來工作展望 85 參考資料 86 附錄 90  

    [1] 黃可龍、王兆翔、劉素琴, 鋰離子電池原理與技術
    [2] Xu, W., et al. (2014). "Lithium metal anodes for rechargeable batteries." Energy Environ. Sci. 7(2): 513-537.
    [3] Yemeserach Mekonnen, et al. (2016). "A Review of Cathode and Anode Materials for Lithium-Ion Batteries."
    [4] Yoo, H. D., et al. (2014). "On the challenge of developing advanced technologies for electrochemical energy storage and conversion." Materials Today 17(3): 110-121.
    [5] Nitta, N., et al. (2015). "Li-ion battery materials: present and future." Materials Today 18(5): 252-264.
    [6] Manthiram, A. (2017). "An Outlook on Lithium Ion Battery Technology." ACS Cent Sci 3(10): 1063-1069.
    [7] Yuan, Y., et al. (2017). "Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy." Nature Communications 8: 15806.
    [8] Eftekhari, A. (2017). "Low voltage anode materials for lithium-ion batteries." Energy Storage Materials 7: 157-180.
    [9] Yuan, Y., et al. (2017). "Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy." Nature Communications 8: 15806.
    [10] Song, J.Y. , et al. (1999). "Review of gel-type polymer electrolytes for lithium-ion batteries. " Journal of Power Sources 77: 183–197.
    [11] Zhang, S. S. (2007). "A review on the separators of liquid electrolyte Li-ion batteries." Journal of Power Sources 164(1): 351-364.
    [12] 李治宏、龔丹誠, 鋰電池隔離膜發展趨勢與近況, 工研院材化所.
    [13] Zhang, W.-J. (2011). "A review of the electrochemical performance of alloy anodes for lithium-ion batteries." Journal of Power Sources 196(1): 13-24.
    [14] Kim, H., et al. (2014). "Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries." Materials Today 17(6): 285-297.
    [15] Wang, A., et al. (2018). "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries." npj Computational Materials 4(1).
    [16] Michan, A. L., et al. (2015). "Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products." Chemistry of Materials 28(1): 385-398.
    [17] Jankowski, P., et al. (2017). "SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches." J Mol Model 23(1): 6.
    [18] Philippe, B., et al. (2013). "Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study." J Am Chem Soc 135(26): 9829-9842.
    [19] Taeho Yoon, et al. (2013). "Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation." Journal of The Electrochemical Society, 164 (9) A2082-A2088
    [20] Lin, Y. M., et al. (2012). "High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries." Chem Commun (Camb) 48(58): 7268-7270.
    [21] Chen, Z., et al. (2003). "Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers." Electrochemistry Communications 5(11): 919-923.
    [22] Choi, N.-S., et al. (2015). "Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries." Journal of Electrochemical Science and Technology 6(2): 35-49.
    [23] Magasinski, A., et al. (2010). "Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid." ACS Appl Mater Interfaces 2(11): 3004-3010.
    [24] 莊絢仁,含矽氧烷與亞醯胺之環氧樹脂與含矽氧烷之雙酸酐交聯產物之特性研究, 國立交通大學應用化學研究所碩士論文,2003.
    [25] Wang, F.-M., et al. (2008). "Synthesis of functionalized copolymer electrolytes based on polysiloxane and analysis of their conductivity." Journal of Applied Electrochemistry 39(2): 253-260.
    [26] Wang, F.-M., et al. (2013). "Phenylenedimaleimide positional isomers used as lithium ion battery electrolyte additives: Relating physical and electrochemical characterization to battery performance." Journal of Power Sources 231: 18-22.
    [27] Wang, F.-M., et al. (2009). "Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries." Electrochimica Acta 54(12): 3344-3351.
    [28] Impedance Spectroscopy; Theory, Experiment, and Applications, 2nd ed. , E. Barsoukov, J.R. Macdonald, eds., Wiley Interscience Publications, 2005.
    [29] Gamry Instruments, Basics of Electrochemical Impedance Spectroscopy.
    [30] Quan-Chao Zhuang., et al. "Diagnosis of Electrochemical Impedance Spectroscopy in Lithium-Ion Batteries "
    [31] X射線光電子能譜學, 維基百科.
    [32] 科教資源,同步輻射中心.
    [33] Ikonen, T., et al. (2017). "Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries." Sci Rep 7(1): 7880.
    [34] Liu, W., et al. (2015). "Enhanced electrochemical activity of rechargeable carbon fluorides–sodium battery with catalysts." Carbon 93: 523-532.
    [35] Yu, X., et al. (2017). "Preparation and characterization of spherical β-cyclodextrin/urea–formaldehyde microcapsules modified by nano-titanium oxide." RSC Advances 7(13): 7857-7863.
    [36] Osman, Z. and A. K. Arof (2003). "FTIR studies of chitosan acetate based polymer electrolytes." Electrochimica Acta 48(8): 993-999.
    [37] Shi, F., et al. (2017). "The Chemistry of Electrolyte Reduction on Silicon Electrodes Revealed by in Situ ATR-FTIR Spectroscopy." The Journal of Physical Chemistry C 121(27): 14476-14483.

    QR CODE