簡易檢索 / 詳目顯示

研究生: Boas Tua Hotasi
Boas Tua Hotasi
論文名稱: Developing Ester-Based Fluorinated Electrolyte with LiPO2F2 as an Additive for High-Rate and Thermally Robust Anode-Free Lithium Metal Battery
Developing Ester-Based Fluorinated Electrolyte with LiPO2F2 as an Additive for High-Rate and Thermally Robust Anode-Free Lithium Metal Battery
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 蘇威年
Wei Nien Su
吳溪煌
She Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 102
中文關鍵詞: anode-free lithium metal batterylinear esterslithium difluorophosphate (LiPO2F2)ionic conductivityrate capabilitythermal stability
外文關鍵詞: anode-free lithium metal battery, linear esters, lithium difluorophosphate (LiPO2F2), ionic conductivity, rate capability, thermal stability
相關次數: 點閱:372下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空間任務、軍事要求和便攜式應用需要高能量密度、長循環壽命、高倍率能力和極低溫耐受性的能量存儲。1 M LiPF6 的FEC/TTE/EMC (FTE 352) 電解液已被證明可以提高無陽極鋰金屬電池 (AFLMB) 的循環壽命、安全性和能量密度,因為它具有高氧化穩定性、不易燃性和形成的能力富含氟化鋰 (LiF) 的固體電解質中間相 (SEI)。然而,在實際應用中必須考慮電解質的倍率性能、寬溫度範圍和熱穩定性。在本論文中,開發了1 M LiPF6 的FEC/TTE/EMC/MA酯基氟化電解液以及二氟磷酸鋰(LiPO2F2)為添加劑,及其最佳配方為體積比1/5/2/2和1wt%添加量(FTEM 1522 + 1 LPF)。該電解液具有高離子電導率、高氧化性穩定性 (>5 V)、高倍率能力和低溫 (0 oC) 的耐受性。這種電解液運用在無陽極電池中,室溫下提供 97.5% 的平均庫倫效率,0 oC 下可達 96%;相較於參考電解質1 M LiPF6 的FEC/TTE/EMC (FTE 352)的平均庫倫效率,在 0 oC為則為94.4%。這種電解液在 2 mA/cm2 的電流密度下也能保持 80% 的容量保持率,遠高於參考電解液的60%容量保持率。


    Energy storage with high energy density, long cycle life, high rate capability, and extreme low-temperature tolerance is required for space missions, military requirements, and man-portable applications. The electrolyte of 1 M LiPF6 in FEC/TTE/EMC (FTE 352) has been demonstrated to increase cycle life, safety and energy density of anode-free lithium metal battery (AFLMB) due to its high oxidative stability, nonflamability and capability to form lithium fluoride (LiF) rich solid electrolyte interphase (SEI). However, rate capability, wide temperature range and thermal stability of electrolytes must be taken into consideration for practical applications. In this work, 1 M LiPF6 in FEC/TTE/EMC/MA (1/5/2/2 vol. ratio) + 1wt.% LiPO2F2 (FTEM 1522 + 1 LPF) was developed, which has high ionic conductivity, high oxidative stability (>5 V), high rate capability, and tolerance of extremely low temperature (0 oC). This electrolyte delivers average coulombic efficiency of 97.5% at room temperature and 96% at 0 oC using an anode-free configuration, while the average coulombic efficiency of reference electrolyte, 1 M LiPF6 in FEC/TTE/EMC (FTE 352) is 94.4% at 0 oC. This electrolyte also holds capacity retention of 80% under a current density of 2 mA/cm2, while the reference electrolyte’s retention capacity is 60%.

    中文摘要 i Abstract ii Acknowledgments iii Table of Contents iv List of Figures vii List of Tables xi List of Units and Abbreviations xi Chapter 1 Introduction 1 1.1. Energy Sources 1 1.2. Battery as Electrochemical Energy Storage Devices 1 1.3. Lithium Secondary Battery 3 1.3.1. Graphite Anode Lithium-ion Battery 4 1.3.2. Silicon Anode Lithium-ion Battery 4 1.3.3. Lithium Metal Anode Battery 5 1.4. Basic Components of Lithium Metal Batteries 6 1.4.1. Cathode Materials 6 1.4.2. Separators 7 1.4.3. Electrolytes 7 1.5. Organic Liquid Electrolyte and Its Components 8 1.5.1. Solvents 8 1.5.2. Salts 10 1.5.3. Electrolyte Additives 12 Chapter 2 Fundamentals of Anode-Free Lithium Metal Battery 14 2.1. Working Principle of Anode-free Lithium Metal Battery 14 2.2. Challanges of Anode-free Lithium Metal Battery 15 2.2.1. Low Lithium Plating Binding Energy 15 2.2.2. Interfacial Reactions 16 2.2.3. Dendrite Formation 17 2.2.4. Limited Active Material 18 2.3. Approaches 19 2.3.1. Current Collector Engineering 19 2.3.2. Artificial Lithiophilic Coating 20 2.3.3. Testing Protocols 21 2.3.4. Liquid Electrolyte Formulation 23 2.4. Motivations and Objectives of the Study 30 2.4.1. Motivations 30 2.4.2. Objectives 31 Chapter 3 Experimental and Characterization 33 3.1. Chemical and Reagents 33 3.2. Materials Preparation 34 3.2.1. Cathode Material 34 3.2.2. Anode Current Collector Material 34 3.2.3. Electrolyte Preparation 34 3.3. Electrochemical Measurements 36 3.4. Conductivity and Viscosity Measurements 37 3.5. Anode Morphology Observation 38 3.6. Surface Characterization 39 Chapter 4 Result and Discussion 41 4.1. Electrolyte Optimization 41 4.1.1. Solvent Optimization 41 4.1.2. Effect of LiPO2F2 Towards Cu||NMC111 Cyclic Performances 43 4.2. Electrochemical Measurement at Room Temperature 45 4.2.1. Electrolyte’s Physical Properties 45 4.2.2. Room Temperature Electrochemical Stability of Cu||NMC111 48 4.2.3. Plating Stripping Morphology of Different Electrolytes 52 4.2.4. Electrochemical Stability of Li||NMC111 53 4.3. Electrochemical Measurements at High Rate and Lower Temperature 56 4.3.1. Polarization at High Current Density and Impedance 56 4.3.2. SEI Composition of Different Electrolytes 59 4.3.3. Cyclic Stability of Cu||NMC111 at Wide Temperature (0 oC) 60 4.3.4. Plating Stripping Morphology at 0 oC 62 Chapter 5 Conclusions and Future Outlooks 63 5.1. Conclusions 63 5.2. Future Outlooks 64 References 66

    1. Goodenough, J.B., Energy Storage Materials: A Perspective. Energy Storage Materials 2015: p. 158-161.
    2. Bulut, U., The impacts of non-renewable and renewable energy on CO2 emissions in Turkey. Environmental Science and Pollution Research 2017: p. 15416-15426.
    3. Das, C.K.; Bass, O.; Kothapalli, G., Mahmoud, T.S.; Habibi, D., Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renewable and Sustainable Energy Reviews, 2018: p. 1205-1230.
    4. Bard, A. and Faulkner, L., Electrochemical Methods: Fundamentals and Applications. 2001, United States: John Wiley & Sons, Inc.
    5. Swartling, D.J. and Charlotte, M., Lemon cells revisited-The lemon-powered calculator. Journal of chemical education, 1998: p. 181.
    6. Pavlov, D., Lead-acid batteries: science and technology. 2011: Elsevier.
    7. Bullock, K., Lead/acid batteries. Journal of Power Sources, 1994. 51: p. 1-17.
    8. Jung, J.; Zhang, L.; Zhang, J., Lead-acid battery technologies: fundamentals, materials, and applications. Vol. 8. 2015: Crc Press.
    9. Linden, D., Handbook of Batteries. 1995: Fuel and Energy Abstracts.
    10. Bernard, P. and Lippett, M., Chapter 14 - Nickel–Cadmium and Nickel–Metal Hydride Battery Energy Storage. Electrochemical Energy Storage for Renewable Sources and Grid Balancing, 2015: p. 223-251.
    11. Sharma, H.; Rawal, N.; Mathew, B.B., The characteristics, toxicity and effects of cadmium. International journal of nanotechnology and nanoscience, 2015. 3: p. 1-9.
    12. Liang, Y.; Zhao, C.Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.Q.; Zhang, Q., A review of rechargeable batteries for portable electronic devices. InfoMat, 2019.1(1): p. 6-32.
    13. Fischer, M.; Werber, M; Schwartz, P.V., Batteries: Higher energy density than gasoline?. Energy Policy, 2009. 37(7): p. 2639-2641.
    14. Li, J.; Du, Z.; Ruther, R.E.; Jin, S.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C; Kalnaus, S.; Daniel, C; Wood, D.L., Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. Jom, 2017. 69(9): p. 1484-1489.
    15. Xiang, L.; Ou, X.; Wang, X.; Zhou, Z.; Li, X.; Tang, Y., Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual‐Ion Battery. Angewandte Chemie International Edition, 2020. 59(41): p. 17924-17930.
    16. Shi, J.L.; Xiao, D.D.; Ge, M.; Yu, X.; Chu, Y.; Huang, X.; Zhang, X.D.; Yin, Y.X.; Yang, X.Q.; Guo, Y.G.; Gu, L.; Wan, L.J., High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries. Advanced Materials, 2018. 30(9): p. 1-8.
    17. Yoshio, M.; Brodd, R.; Kozawa, A., Lithium Ion Batteries. 2009, New York: Springer.
    18. Zhang, Y.; Zhang, X.G.; Zhang, Z.G; Zhao, F.; Liu, C.; Cheng, H.M., Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochimica Acta. 2006. 51(23): p. 4994-5000.
    19. Ohzuku, T. and Brodd, R., An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources. 2007. 174(2): p. 449-456
    20. Chikkanavar, S.; Benardi, D.; Liu, L., A Review of Blended Cathode Materials for Use in Li-Ion Batteries. Journal of Power Sources. 2014. 248: p.91-100.
    21. Qian, J.; Adams, B.D.; Zheng, J.; Xu, W.; Henderson, W.A.; Wang,J., Anode‐free rechargeable lithium metal batteries. Advanced Functional Material. 2016. 26(39): p. 7094-7102
    22. Zhang, J.-G.; Qian, J.; Xu, W.; Henderson, Anode Free Rechargable Battery. 2014: United States.
    23. Brandt, K., Historical development of secondary lithium batteries. Solid State Ionics. 1994. 69(3): p. 173-183.
    24. Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.J., Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy. 2017. 31: p. 113-143
    25. Casimir, A.; Zhang, H.; Ogoke, O.; Amine, J.C.; Lu, J.; Wu, G., Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy. 2016. 27: p. 359-376.
    26. Gu, M.; He, Y.; Zheng, J.; Wang, C., Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy. 2015. 17: p. 366-383.
    27. Lin, D.; Liu, Y.; Cui, Y., Reviving the Lithium Metal Anode for High-Energy Density Battery. Nature Nanotechnology. 2016. 12 (3): p. 194-206.
    28. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.G., Lithium metal anodes for rechargeable batteries. Energy and Environmental Science.2014. 7: p. 513-537
    29. Balbuena, P. B., and Wang, Y., Lithium-ion batteries: solid-electrolyte interphase. 2004: Imperial College Press.
    30. Kim, H.; Jeong, G.; Kim, Y.U.; Kim, J.H.; Park, C.M.; Sohn, H.J., Metallic anodes for next generation secondary batteries. Chemical Society Reviews. 2013. 42(23): p. 9011-9034.
    31. Tikekar, M.D.; Choudhury, S.; Tu, X.; Archer, L.A., Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy. 2016. 1(9): p. 1-7.
    32. Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews, 2018. 1(1): p. 35-53.
    33. Xu, J.; Dou, S.; Liu, H.; Dai, L., Cathode materials for next generation lithium ion batteries. Nanoscale. 2019. 2(4): p. 439-442.
    34. Goodenough, J.B. and Kim, Y., Challenges for rechargeable Li batteries. Chemistry of Materials. 2010. 22(3): p. 587-603.
    35. Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I., A review of cathode and anode materials for lithium-ion batteries. 2016. IEEE: p. 1-6.
    36. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H.A., Chemical versus electrochemical electrolyte oxidation on NMC111. The Journal of Physical Chemistry Letters. 2017. 8(19): p. 4820-4825.
    37. Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry. 2011. 15(4): p. 649-662.
    38. Orendorff, C.J., The Role of Separators in Lithium-Ion Cell Safety. The Electrochemical Society of Interfaces. 2012. 21(61): p. 61.
    39. Jeong, H.-S.; Hong, S.C.; Lee., S.Y., Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. Journal of Membrane Science. 2010. 364(1): p. 177-182.
    40. Ahn, Y.K.; Kwon, Y.K.; Kim, K.J., Surface‐modified polyethylene separator with hydrophilic property for enhancing the electrochemical performance of lithium‐ion battery. International Journal of Energy Research. 2020. 44(8): p. 6651-6659.
    41. Amereller, M.T.; Schedlbauer, D.; Moosbauer, C.; Schreiner, C.; Stock, F.; Wudy; Wiemhöfer, H.D., Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. 2014. 4(42): p. 39-56.
    42. Miao, R.J.; Yang, Z.; Xu, J.; Wang, Y.; Nuli, L.; Sun, A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific Reports. 2016. 6(1): p. 1-9.
    43. Smart, M.C.; Ratnakumar, B.V.; Surampudi, S., Use of Organic Esters as Cosolvents in Electrolytesfor Lithium-Ion Batteries with Improved Low Temperature Performance. Journal of the Electrochemical Society. 2002. 149(4): p. A361.
    44. Su, C.C.; He, M.; Amine, R.; Chen, Z.; Sahore, R.; Rago, N.D.; Amine, K., Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials. 2019. 17: p. 284-292.
    45. Hagos, T.T.; Su, W.N.; Huang, C.J.; Thirumalraj, B. ; Chiu, S.F.; Abrha, L.H.; Hagos, T.M.; Bezabh, H.K.; Berhe, G.B.; Tegegne, W.; Cherng, J.Y.; Yang, Y.W.; Hwang, B.J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources. 2020. 461: p. 1-9.
    46. Son, H.B.; Jeong, M.Y.; Han, J.G.; Kim, K.; Kim, K.H.; Jeong, K.M.; Choi, N.S., Effect of reductive cyclic carbonate additives and linear carbonate co-solvents on fast chargeability of LiNi0. 6Co0. 2Mn0. 2O2/graphite cells. Journal of Power Sources. 2018. 400: p. 147-156.
    47. Borodin, O.; Behl, W.; T.R., Jow., Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. The Journal of Physical Chemistry C. 2013. 117(17): p. 8661-8682.
    48. Morita, M. and Asai, Y., A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. Journal of the Chemical Society, Faraday Transactions. 1998. 94(23): p. 3451-3456.
    49. Zhang, Y.; Zhong, Y.; Liang, S.; Wang, B.; Chen,X.; Wang, H., Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases. ACS Materials Letters. 2019. 1(2): p. 254-259.
    50. Liu, P.; Ma, Q.; Fang, Z.; Ma, J.; Hu, Y.S.; Zhou, Z.B.; Chen, L.Q. ,Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes. Chinese Physics B. 2016. 25(7): p. 1-7.
    51. Beyene, T.T.; Bezabh, H.K.; Weret, M.A.; Hagos, T.M.; Huang, C.J.; Wang, C.H.; Hwang, B.J. Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free li-metal batteries. Journal of The Electrochemical Society. 2019. 166(8): p. A1501.
    52. Knyazkov, D.A.; Bolshova, T.A.; Shvartsberg, V.M.; Gerasimov, I.E.; Shmakov, A.G.; Korobeinichev, O.P., Effect of inhibitors on flammability limits of dimethyl ether/air mixtures. Proceedings of the Combustion Institute . 2019. 37(3): p. 4267-4275.
    53. Hagos, T.M.; Hagos, T. T.; Bezabh, H.K.; Berhe, G.B.; Abrha, L.H. ; Chiu, S.F.; Su, W.N.; Dai, H.; Hwang, B.J. Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials. 2020. 3(11): p. 10722-10733.
    54. Bezabh, H.K.; Chiu, S.F.; Hagos, T.M.; Tsai, M.C.; Nikodimos, Y.; Redda, H.G.; Su, W.N.; Hwang, B.J., Bridging role of ethyl methyl carbonate in fluorinated electrolyte on ionic transport and phase stability for lithium-ion batteries. Journal of Power Sources, 2021. 494: p. 229760.
    55. Kim, N.; Myung, Y.; Kang, H.; Lee, J.W.; Yang, M., Effects of Methyl Acetate as a Co-Solvent in Carbonate-Based Electrolytes for Improved Lithium Metal Batteries. ACS applied materials & interfaces. 2019. 11(37): p. 33844-33849.
    56. Smart, M.C.; Ratnakumar, B.V.; Surampudi, S.; Wang, Y.; Zhang, X.; Greenbaum, S.G.; Fultz, B., Irreversible Capacities of Graphite in Low‐Temperature Electrolytes for Lithium‐Ion Batteries. Journal of the Electrochemical Society. 1999. 146(11): p. 3963.
    57. Pham, T.D. and Lee, K.K., Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. Small, 2021. 17(20): p. 2100133
    58. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews. 2004. 104(10): p. 4303-4418.
    59. Hagos, T.T.; Thirumalraj, B.; Huang, C.-J.; Hadush, L.; Hagos, T. ; Berhe, G. ; Bezabh, H.; Cherng, J.; Chiu, S.F.; Su, W.N.; Hwang, B.J. Locally Concentrated LiPF6 in Carbonate-based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Battery. ACS applied materials & interfaces. 2019. 11(10): p. 9955-9963.
    60. Hagos, T.M.; Berhe, G.B.; Hagos, T.T.; Bezabh, H.K.; Abrha, L.H.; Beyene, T.T.; Su, W.N.; Hwang, B.J., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta . 2019. 316: p. 52-59.
    61. Haregewoin, A.; Wotango, A.S.; Hwang, B.J., Electrolyte Additives for Lithium Ion Battery: Progress and Perspectives. Energy & Environmental Science. 2016. 9(6): p. 1955-1988.
    62. Younesi, R.; Veith, G.M.; Johansson, P.; Edström, K.; Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S. Energy & Environmental Science. 2015. 8(7): p. 1905-1922.
    63. Li, S.; Luo, Z.; Li, L.; Hu, J.; Zou, G.; Hou, H.; Ji, X., Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials. 2020. 32: p. 306-319.
    64. Liu, D.; Qian, K.; He, Y.B.; Luo, D.; Li, H.; Wu, M.; Li, B., Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. Electrochimica Acta. 2018. 269: p. 378-387.
    65. Okuno, Y.; Ushirogata, K.; Sodeyama, K.; Tateyama, Y., Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study. Physical Chemistry Chemical Physics, 2016. 18(12): p. 8643-8653.
    66. Xia, L.; Lee, S.; Jiang, Y.; Xia, Y.; Chen, G.; Liu, Z., Fluorinated Electrolytes for Lithium Ion Batteries: The Lithium DifluoroOxalate Borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS omega. 2017. 2(12): p. 8741-8750.
    67. Ma, L.; Ellis, L.; Glazier, S.L.; Ma, X.; Dahn, J.R., Combinations of LiPO2F2 and Other Electrolyte Additives in Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells. Journal of The Electrochemical Society. 2018. 165(9): p. A1718.
    68. Liu, L.; Gu, S.; Wang, S.; Zhang, X.; Chen, S., A LiPO2F2/LiPF6 dual-salt electrolyte enabled stable cycling performance of nickel-rich lithium ion batteries. RSC Advances. 2020. 10(2): p. 1704-1710.
    69. Hsieh, Y.-C.; Thienenkamp, J.H.; Huang, C.-J.; Tao, H.-C.; Rodehorst, U.; Hwang, B.J.; Winter, M.; Brunklaus, G., Revealing the Impact of Film-Forming Electrolyte Additives on Lithium Metal Batteries via Solid-State NMR/MRI Analysis. Journal of Physical Chemistry, 2021. 125(1): p. 252-265.
    70. Chen, Y.; Zhao, W.; Zhang, Q.; Yang, G. ; Zheng, J.; Tang, W.; Xu, Q.; Lai, C.; Yang, J.; Peng, C., Armoring LiNi1/3Co1/3Mn1/3O2 Cathode with Reliable Fluorinated Organic–Inorganic Hybrid Interphase Layer toward Durable High Rate Battery Advanced Functional Materials, 2020. 30(19): p. 2000396.
    71. Tian, Y.; An, Y.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y., Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020.78: p. 105344.
    72. Huang, C.-J.; Thirumalraj, B.; Tao, H.C; Shitaw, K.N.; Sutiono, H.; Hagos, T.T.; Beyene, T.T.; Kuo, L.M.; Wang, C.C.; Wu, S.H.; Su, W.N.; Hwang, B.J., Decoupling the origins of irreversible coulombicefficiency in anode-free lithium metal batteries. Nature Communications, 2021. 12(1): p. 1-10.
    73. Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G., Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials, 2020. 32: p. 386-401.
    74. Tian, Y.; An, Y.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y., Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy. 2020. 78: p. 105344.
    75. Zhang, R.; Chen, X.R.; Chen, X.; Cheng, X.B.; Zhang, X.Q.; Yan, C.; Zhang, Q., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes. Angewandte Chemie. 2017. 129 (27): p. 7872-7876.
    76. Zhang, R.; Chen, X.R.; Chen, X.; Cheng, X.B.; Zhang, X.Q.; Yan, C.; Zhang, Q., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes. Angewandte Chemie. 2017. 129(27): p. 7872-7876.
    77. Tang, S.; Qiu, Z.; Wang, X.Y.; Gu, Y.; Zhang, X.G.; Wang, W.W.; Mao, B.W. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy. 2018. 48: p. 101-106.
    78. Liu, S.; Xia, X.; Deng, S.; Xie, D.; Yao, Z.; Zhang, L.; Tu, J., In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct High‐Performance Lithium‐Metal Anodes. Advanced Materials. 2019. 31(3): p. 1806470.
    79. Shitaw, K.N.; Yang, S.C.; Jiang, S.K.; Huang, C.J.; Sahalie, N.A.; Nikodimos, Y.; Weldeyohannes, H.H.; Wang, C.H.; Wu, S.H.; Su, W.N.; Hwang, B.J.; Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode‐Free Li‐Metal Battery. Advanced Functional Materials, 2020. 31(6): p. 1-12.
    80. Kim, S.P.; Duin, A.C.T.; Shenoy, V.B., Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study. Journal of Power Sources, 2011. 196(20): p. 8590-8597.
    81. Wei, S.; Choudhury, S.; Tu, Z.; Zhang, K.; Archer, L.A., Electrochemical interphases for high-energy storage using reactive metal anodes. Accounts of chemical research. 2018. 51(1): p. 80-88.
    82. Chen, Z.; Lu, W.Q.; Liu, J.; Amine, K., LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochimica Acta, 2006. 51(16): p. 3322-3326.
    83. Im, J.; Lee, J.; Ryou, M.-H., Lee, Y.M.; Cho, K.Y., Fluorinated Carbonate-Based Electrolyte for High-Voltage Li(Ni0.5Mn0.3Co0.2)O2/Graphite Lithium-Ion Battery. Journal of The Electrochemical Society, 2017. 164(1): p. A6381.
    84. Frenck, L.; Maslyn, J.A.;Balsara, N.P., Factors that control the formation of dendrites and other morphologies on lithium metal anodes. 2019. 7(115).
    85. Weber, R.; Genovese, M.; Louli, A.J.; Hames, S.; Martin, C.; Hill, I.G.; Dahn, J.R., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy. 2019. 4(8): p. 683-689.
    86. Sun, F. and I. Manke, Differentiating and Quantifying Dead Lithium. ChemElectroChem. 2019. 6(23): p. 5787-5789.
    87. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017. 117(15): p. 10403-10473.
    88. Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y., Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters. 2017. 17(2): p. 1132-1139.
    89. Pande, V. and Viswanathan, V., Computational screening of current collectors for enabling anode-free lithium metal batteries. 2019. 4(12): p. 2952-2959.
    90. Yang, C.P.; Yin, Y.X.; Zhang, S.F.; Li, N.W.; Guo, Y.G., Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature communications. 2015. 6(1): p. 1-9.
    91. Zhang, S.S.; Fan, X.; Wang, C., A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta. 2017. 258: p. 1201-1207.
    92. Abrha, L.H.; Zegeye, T. A.; Hagos, T. T.; Sutiono, H., Hagos, T. M., Berhe, G. B.; Hwang, B.J., Li7La2.75Ca0.25Zr1.75Nb0.25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. 2019. Electrochimica Acta. 325: p. 134825.
    93. Assegie, A.A.; Cheng, J. H.; Kuo, L. M.; Su, W. N.; B.J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale. 2018. 10(13): p. 6125-6138.
    94. Kang, T.; Zhao, J.; Guo, F.; Zheng, L.; Mao, Y.; Wang, C.; Chen, L., Dendrite-Free Lithium Anodes Enabled by a Commonly Used Copper Antirusting Agent. ACS applied materials & interfaces. 2020. 12(7): p. 8168-8175.
    95. Wondimkun, Z.T.; Beyene, T. T.; Weret, M. A.; Sahalie, N. A.; Huang, C. J.; Thirumalraj, B; Hwang, B.J. Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources. 2020. 450: p. 227589.
    96. WonSeong, I.; Hong, C.H.; Kim, B.K; Yoona, W.Y., The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. Journal of Power Sources, 2008. 178(2): p. 769-773.
    97. Genovese, M.; Louli, A.J.; Weber, R.; Martin, C.; Taskovic, T.; Dahn, J.R. Hot formation for improved low temperature cycling of anode-free lithium metal batteries. Journal of The Electrochemical Society. 2019. 166(14): p. A3342.
    98. Liu, G. and Lu, W., A model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. Journal of the Electrochemical Society. 2019. 164(9): p. A1826.
    99. Jotea, B.A.; Beyene, T.T.; Sahaliea, N.A.; Weret, M.A; Olbassa, B.W.; Wondimkun, Z.T.; Berhe, G.B.; Huang, C.-J.; Su, W.-N.; Hwang, B.J., Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources. 2020. 461: p. 228102.
    100. Louli, A.J.; Genovese, M.; Weber, R.; Hames, S.G; Logan, E.R.; Dahn, J.R., Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. Journal of The Electrochemical Society 2019. 166(8): p. A1291.
    101. Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 84-89.
    102. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004. 104(10).
    103. Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C.H.; Tateyama, Y.; Yamada, A., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications. 2016. 7(1): p. 1-9.
    104. Hagos, T.T.; Su, W.N.; Huang, C.J.; Thirumalraj, B. ; Chiu, S.F.; Abrha, L.H.; Hagos, T.M.; Bezabh, H.K.; Berhe, G.B.; Tegegne, W.; Cherng, J.Y.; Yang, Y.W.; Hwang, B.J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources. 2020. 461: p. 1-9.
    105. Woo, J.J.; Maroni, G.; Liu, J.T.; Vaughey, D.J.; Gosztola, K.; Amine; Zhang, Z., Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. Journal of the Electrochemical Society. 2014. 161(5): p. A827.
    106. Sahalie, N.A.; Assegie, A.A.; Su, W.N.; Wondimkun, Z.T.; Jote, B.A.; Thirumalraj, B.; Hwang, B.J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources. 2019. 437: p. 226912.
    107. Nilsson, V.; Kotronia, A.; Lacey, M.; Edström, K.; Johansson, P., Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries. ACS Applied Energy Materials. 2019. 3(1): p. 200-207.
    108. Hagos, T.T.; Thirumalraj, B.; Huang, C.-J.; Hadush, L.; Hagos, T. ; Berhe, G. ; Bezabh, H.; Cherng, J.; Chiu, S.F.; Su, W.N.; Hwang, B.J. Locally Concentrated LiPF6 in Carbonate-based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Battery. ACS applied materials & interfaces. 2019. 11(10): p. 9955-9963.
    109. Beyene, T.T.; Bezabh, H.K.; Weret, M.A.; Hagos, T.M.; Huang, C.J.; Wang, C.H.; Hwang, B.J. Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free li-metal batteries. Journal of The Electrochemical Society. 2019. 166(8): p. A1501.
    110. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Wang, C., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology. 2018. 12(8): p. 715-722.
    111. Fan, X., L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, K. Amine, K. Xu, and C. Wang, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018. 13(8): p. 715-722.
    112. Su, C.C.; He, M.; Amine, R.; Rojas, T.; Cheng, L.; Ngo, A.T.; Amine, K., Solvating power series of electrolyte solvents for lithium batteries. Energy & Environmental Science. 2019. 12(4): p. 1249-1254.
    113. Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D.G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S; Zheng, Y.; Amanchukwu, C.V.; Hung, S.T.; Ma, Y.; Lomeli, E.G.; Qin, J.; Cui, Y.; Bao, Z., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020. 5(7): p. 526-533.
    114. Plichta, E.J.; Hendrickson, M.; Thompson, R.; Au, G.; Behl, W.K.; Smart, M.C.; Ratnakumar, B.V.;.Surampudi, S., Development of low temperature Li-ion electrolytes for NASA and DoD applications. Journal of Power Sources, 2001. 94(2): p. 160-162.
    115. Krause, F.C.; Ruiz, J.P.; Jones, S.C.; Brandon, E.J.; Darcy, E.C.; Iannello, C.J.; Bugga, R.V., Performance of Commercial Li-Ion Cells for Future NASA Missions and Aerospace Applications. Journal of The Electrochemical Society, 2021. 168(4): p. 040504.
    116. Smart, M.C.; Ratnakumar, B.V.; Chin, K.B.; Whitcanack, L.D.; Davies, E.D.; Surampudi, S.; Manzo, M.A.; Dalton, P.J., Lithium-ion cell technology demonstration for future NASA applications, in 37th Intersociety Energy Conversion Engineering Conference, IEEE, Editor. 2002. p. 297-304.
    117. Smart, M.C.; Ratnakumar, B.V.; Surampudi, S., Use of Organic Esters as Cosolvents in Electrolytesfor Lithium-Ion Batteries with Improved Low Temperature Performance. Journal of the Electrochemical Society. 2002. 149(4): p. A361.
    118. Chen, J.; Xing, L.; Yang, X.; Liu, X.; Li, T.; Li, Weishan, Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive. Electrochimica Acta, 2018. 290: p. 568-576.
    119. Su, C.C.; He, M.; Amine, R.; Rojas, T.; Cheng, L.; Ngo, A.T.; Amine, K., Solvating power series of electrolyte solvents for lithium batteries. Energy & Environmental Science. 2019. 12(4): p. 1249-1254.
    120. Brouillette, D.; Perron, G.; Desnoyers, J.E., Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures. Electrochimica Acta, 1999. 44(26): p. 4721-4742.
    121. Sun, L.; Morales-Collazo, O.; Xia, H.; Brennecke, J.F., Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation. Journal of Physical Chemistry, 2016. 120(25): p. 5767–5776.
    122. Kim, K.; Park, I.; Ha, S.-Y.; Kim, Y.; Woo, M.-H.; Jeong, M.-H.; Shin, W.C.l; Ue, M.; Hong, S.Y.; Choi, N.-S., Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochimica Acta, 2017. 225: p. 358-368.
    123. Xia, L.; Lee, S.; Jiang, Y.; Xia, Y.; Chen, G.Z.; Liu, Z., Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS omega, 2017. 2(12): p. 8741-8750.
    124. Im, J.; Lee, J.; Ryou, M.H.; Lee, Y.M.; Cho, K.Y., Fluorinated carbonate-based electrolyte for high-voltage Li (Ni0. 5Mn0. 3Co0. 2) O2/graphite lithium-ion battery. Journal of The Electrochemical Society. 2017. 164(1): p. A6381.
    125. Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P.C.; Amine, K., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013.6(6): p. 1806-1810.
    126. Zhang, S.S.; Fan, X.; Wan, C., A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta, 2017. 258: p. 1201-1207.
    127. Jotea, B.A.; Beyene, T.T.; Sahaliea, N.A.; Weret, M.A; Olbassa, B.W.; Wondimkun, Z.T.; Berhe, G.B.; Huang, C.-J.; Su, W.-N.; Hwang, B.J., Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources. 2020. 461: p. 228102.
    128. Hagos, T.T.; Thirumalraj, B.; Huang, C.-J.; Hadush, L.; Hagos, T. ; Berhe, G. ; Bezabh, H.; Cherng, J.; Chiu, S.F.; Su, W.N.; Hwang, B.J. Locally Concentrated LiPF6 in Carbonate-based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Battery. ACS applied materials & interfaces. 2019. 11(10): p. 9955-9963.

    129. Bieker, G., Winter, M.; Bieker, P., Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Physical Chemistry Chemical Physics, 2015. 17(14): p. 8670-8679.
    130. Hagos, T.M.; Hagos, T. T.; Bezabh, H.K.; Berhe, G.B.; Abrha, L.H. ; Chiu, S.F.; Su, W.N.; Dai, H.; Hwang, B.J. Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials. 2020. 3(11): p. 10722-10733.
    131. Haregewoin, A.; Wotango, A.S.; Hwang, B.J., Electrolyte Additives for Lithium Ion Battery: Progress and Perspectives. Energy & Environmental Science. 2016. 9(6): p. 1955-1988.
    132. Kasnatscheew, J.; Streipert, B.; Röser, S.; Wagner, R.; Laskovic, I.C.; Winter, M., Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies. Journal of Physical Chemistry, 2017. 19(24): p. 16078-16086.
    133. Li, J.; Li, H.; Ma, X.; Stone, W.; Glazier, S.; Logan, E.; Tonita, E.M.; Gering, K.L.; Dahn, J.R., Methyl Acetate as a Co-Solvent in NMC532/Graphite Cells. Journal of The Electrochemical Society, 2018. 165(5): p. A1027.
    134. Rui, X.; Yan, C.; Xiao, Y.; Zhao, M.; Yuan, H.; Huang, J.Q., The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Materials, 2020. 28: p. 401-406.
    135. Cheng, J.-H.; Assegie, A.A.; Huang, C.-J.; Lin, M.-H; Tripathi, A.M.; Wang, C.-C.; Tang, M.-T.; Song, Y.-F.; Su, W.-N.; Hwang, B.J., Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy. Journal of Physical Chemistry, 2017. 121(14): p. 7761-7766.
    136. Hagos, T.T.; Su, W.N.; Huang, C.J.; Thirumalraj, B. ; Chiu, S.F.; Abrha, L.H.; Hagos, T.M.; Bezabh, H.K.; Berhe, G.B.; Tegegne, W.; Cherng, J.Y.; Yang, Y.W.; Hwang, B.J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources. 2020. 461: p. 1-9.
    137. Kim, N., Y.; Myung, H.; Kang, J.W.; Lee; Yang, M., Effects of methyl acetate as a co-solvent in carbonate-based electrolytes for improved lithium metal batteries. ACS applied materials & interfaces, 2019: p. 33844-33849.
    138. Yang, B.; Zhang, H.; Yu, L.; Fan, W.; Huang, D., Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells. Electrochimica Acta, 2016. 221: p. 107-114.

    無法下載圖示 全文公開日期 2026/08/03 (校內網路)
    全文公開日期 2026/08/03 (校外網路)
    全文公開日期 2026/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE