簡易檢索 / 詳目顯示

研究生: 廖禮葳
Lee-Wei Liao
論文名稱: 鋰離子電池新型添加劑之合成及其應用
Synthesis and Applications of New Additives for Lithium Ion Batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 江志強
Jyh-Chiang Jiang
蘇威年
Wei-Nien Su
陳景翔
Ching-Hsiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 160
中文關鍵詞: 碳酸丙烯酯共遷入高分歧化聚合物固體電解質界面熱穩定性
外文關鍵詞: Propylene carbonate, Cointercalation, Hyper branch polymer, SEI layer, Thermal stability
相關次數: 點閱:278下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發兩種不同功能添加劑之應用 (一)抑制PC電解液於充放電過程中與鋰離子共遷入碳材電極中之現象,並使電池能有效運作。(二)高分歧化聚合物(Hyper branched Polymaleimide, HBPM)應用於鋰離子電池陰極之熱穩定型添加劑。
    根據理論計算,研發出可抑制PC電解液於充放電過程中與鋰離子共遷入碳材材料電極中之現象之新型添加劑。當添加量為2wt.%時,能有效抑制共遷入現象,並維持穩定有效率的充放電。當添加量為1wt.%時,無法有效阻止共遷入現象,電池無法正常運作。而當添加量超過5wt.%以上,雖然能夠有效抑制共遷入現象,讓電池能順利進行充放電,卻無法維持穩定的電容量。
    HBPM 經過電化學程序後,會於陰極材料鋰鈷氧(LiCoO2)表面上形成固態電解質介面(solid electrolyte interface,SEI ),此新的SEI層能有效提升原本鋰鈷氧於電池系統中的熱穩定性及安定性;此外,藉由將HBPM上未與maleimide反應之OH官能基與小分子Acyl chloride反應,電化學表現有了好的改善;由DSC結果測試,熱裂解溫度及放熱量皆隨著HBPM的導入而延遲。


    In this work, the development of two different additives serving differing functions were fabricated and investigated.。(I) The inhibition of the co-intercalation of PC solvent with Li-ions into graphite electrode allowing for practical use within a PC-solvent containing battery system。(II) Hyper branched polymaleimide (HBPM) used as an cathode additive to alleviate thermal runway。
    Based on criteria established by theoretical calculations, new additives were fabricated to inhibit PC solvent and Li ion co-intercalation into graphite electrode during the charge and discharge process. The addition of 2 wt% of the additives can effectively suppress the co-intercalation phenomenon maintain stable charge/discharge while the addition of only 1wt.% showed relatively poor performance and stability . With the addition of more than 5wt.%, there is adequate suppression of the co-intercalation phenomenon but a reduction of stability occurs.
    After electrochemical cycling, HBPM forms as a new SEI layer on the surface of lithium cobalt oxide, which enhances the thermal stability and reduction of exothermic reactions of lithium cobalt oxide in the battery system as evidenced by DSC. In addition, the use of Acyl chloride to reduce the OH functional groups of the maleimide shows to have greatly enhanced the electrochemical performance and stability during battery operation.

    摘要..........................................................................................................Ⅱ Abstract.....................................................................................................Ⅲ 致謝..........................................................................................................Ⅳ 目錄..........................................................................................................Ⅴ 圖目錄..................................................................................................ⅩⅠ 表目錄..................................................................................................ⅩⅦ 第一章 緒論..............................................................................................1 1-1 前言 ..................................................................................................1 1-2 鋰離子電池的演進與發展.................................................................2 1-3 二次鋰離子電池之組成與機制.........................................................5 1-4 二次鋰離子電池之各元件介紹 .......................................................7 1-4-1 正極(陰極).......................................................................................7 1-4-2負極(陽極)......................................................................................10 1-4-3 隔離膜...........................................................................................12 1-4-4 電解液...........................................................................................13 1-5 研究動機與目的 .............................................................................17 1-5-1用於抑制PC共遷入現象之新型添加劑.........................................17 1-5-2熱穩定型添加劑 ...........................................................................18 第二章 文獻回顧 .................................................................................21 2-1 電解液添加劑 …............................................................................21 2-1-1 SEI (Solid electrolyte interface,固液電解質界面) ....................24 2-1-2 還原型添加劑 .............................................................................27 2-1-3 反應型添加劑 .............................................................................30 2-1-4 正極保護添加劑 .........................................................................36 2-2 安全性改質的技術及進展 ............................................................33 2-2-1 電極材料本身的熱穩定性..........................................................38 2-2-1-1負極與電解液之間的反應......................................................38 2-2-1-2 正極與電解液之間的反應....................................................39 2-3 電池安全機制 ...............................................................................42 2-4 樹枝狀高分子 ...............................................................................47 第三章 實驗方法 ................................................................................52 3-1 實驗儀器設備 ...............................................................................52 3-2 實驗藥品器材 ..............................................................................54 3-3 材料鑑定分析 ..............................................................................56 3-3-1 掃瞄式電子顯微鏡分析(SEM)............................................56 3-3-2 能量散佈分析儀(EDS) ............................................................57 3-3-3 微分掃描熱卡分析儀(DSC).....................................................57 3-3-4 核磁共振儀分析(NMR) ....................................................59 3-3-5 傅立葉轉換紅外線光譜儀(FTIR) ...........................................60 3-3-6 高解析光電子能譜儀(XPS) ....................................................61 3-3-7 熱重量分析儀 (TGA) .............................................................63 3-3-8 膠體滲透層析儀(GPC) ...........................................................63 3-4 材料電化學特性分析 ................................................................64 3-4-1 電池性能測試 .........................................................................64 3-4-2 循環伏安分析 .........................................................................64 3-4-3 交流阻抗分析 .........................................................................65 3-5實驗步驟 ......................................................................................68 3-5-1新型添加劑之合成.................................................................68 3-5-1-1 4-(chloromethyl)-1,3,2-dioxathiolane 2-oxide之合成…..68 3-5-1-2 4,5-bis(chloromethyl)-1,3,2-dioxathiolane 2-oxide之合成..70 3-5-2熱穩定型樹枝狀高分子聚合物材料之合成步驟 .................71 3-5-2-1 N-(4-carboxyphenyl)maleamic acid 單體之合成 ..............71 3-5-2-2 N-(4-carboxyphenyl)maleimide 單體之合成 ...................71 3-5-2-3 N-[4-(chlorocarbonyl)phenyl]maleimide 之合成…….......73 3-5-2-4 Hyperbranched polyester- maleimide terminated 之合....74 3-5-2-5 Hyper branched polyester- maleimide terminated尾端OH基再封端…………………………………………………………………….75 3-5-3 陰極(正極)極片之製備 ..........................................................77 3-5-4 陽極電解液之製備...................................................................79 3-5-5 硬幣型電池之組裝...............................................................79 第四章 結果與討論.............................................................................82 4-1新型添加劑之合成鑑定與性質分析.............................................82 4-1-1 4-(chloromethyl)-1,3,2-dioxathiolane 2-oxide之鑑定 .............83 4-1-2 4,5-bis(chloromethyl)-1,3,2-dioxathiolane 2-oxide之鑑………………………………………………………………….85 4-1-3 新型添加劑之電化學分析…………………….……….…87 4-1-3-1 MCMB電極-純PC電解液之充放電圖譜分析..............................................................................................87 4-1-3-2 MCMB電極-Monochloride additive充放電圖譜分析…..88 4-1-3-3 MCMB電極-dichloride additive充放電圖譜分析..............89 4-1-4 循環伏安分析...........................................................................90 4-1-5 交流阻抗分析 ..........................................................................93 4-1-6 SEM分析 .................................................................................. 94 4-1-7 XRD結構分析.............................................................................96 4-1-8新型添加劑於不同組成條件之電解液下之電化學分析……..97 4-2 熱穩定型高分子材料之合成鑑定與性質分析 ......................101 4-2-1 N-(4-carboxyphenyl)maleamic acid材料的合成鑑定與性質分析 .....................................................................................................101 4-2-1-1 N-(4-carboxyphenyl)maleamic acid單體的DSC結果 .....................................................................................................101 4-2-1-2 N-(4-carboxyphenyl)maleamic acid 單體的IR圖譜 ....................................................................................................101 4-2-1-3 N-(4-carboxyphenyl)maleamic acid 單體的NMR圖譜 .................................................................................................103 4-2-2 N-(4-carboxyphenyl)maleimide單體材料的合成鑑定與性質分析 ................................................................................................ 105 4-2-2-1 N-(4-carboxyphenyl)maleimide單體材料的DSC測試結果 ............................................................................................... 105 4-2-2-2 N-(4-carboxyphenyl)maleimide單體材料的IR分析結果 ............................................................................................... 106 4-2-2-3 N-(4-carboxyphenyl)maleimide單體材料的NMR分析結果 ................................................................................................ 107 4-2-3 N-[4-(chlorocarbonyl)phenyl]maleimide單體材料的合成鑑定與性質分析 ........................................................................................ 110 4-2-3-1 N-[4-(chlorocarbonyl)phenyl]maleimide單體材料的DSC測試結果 .................................................................................................... 110 4-2-3-2 N-[4-(chlorocarbonyl)phenyl]maleimide單體材料的IR分析結果 ................................................................................................... 111 4-2-3-3 N-[4-(chlorocarbonyl)phenyl]maleimide之NMR測試 ................................................................................................. 112 4-2-4 樹枝狀高分子的合成鑑定與性質分析 ...........................115 4-2-4-1樹枝狀高分子之NMR分析結果 .................................... 118 4-2-5 Hyperbranched polymaleimide (HBPM) 之電化學性質與電性表現 ................................................................................................. 121 4-2-5-1 Hyper branched polymaleimide的充放電曲線圖……….121 4-2-6 Hyper branched polymaleimide不同添加量對電池的熱穩定性分析 ................................................................................................. 124 第五章 結論.................................................................................. 126 5-1 新型添加劑............................................................................. 126 5-2 熱穩定型高分子材料 ........................................................... 126 未來展望 ....................................................................................... 128 參考文獻 ....................................................................................... 132

    參考文獻
    1. 狩.浩志 ,【技術講座】電池開發呈多樣化,更加注重安全性能," NIKKEI ELECTRONICS TAIWAN EDITION, 2010.
    2. R.Wagner , S.Brox, J.Kasnatscheew, Dennis Roman Gallus, M.Amereller,I.Cekic-Laskovic, M.Winter, Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries,
    3. Winter M., B.J.O., Spahr M. E. and Novák P., Advanced Materials 10 (1998). 725.
    4. S. Tobishima, J.I.Y., J. Power Sources 81–82 (1999) 882.
    5. U. von Sacken, E.N., A. Sundher, J.R. Dahn, Solid State Ionics69 (1994). 284.
    6. 林振華、林振富, "充電式鋰離子電池之材料與應用.2-2."
    7. H. K. Koji Kariatsumari "鋰離子充電電池的新紀元,"NIKKEI ELECTRONICS TAIWAN EDITION, 2010.
    8. 鄭朝陽, 聯合報 2009. 169期:D2.
    9. U. von Sacken, E.N., A. Sundher, J.R. Dahn, Solid State Ionics69 (1994). 284.
    10. 楊模樺, 鋰電池材料技術發展. 工業材料雜誌 2006. 237:137.
    11. Padhi AK, N.K., Goodenough JB, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society 1997. 144:1188-1194.
    12. Chung SY, B.J., Chiang YM, Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 2002. 1:123-128.
    13. Mi CH, C.G., Zhao XB, Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials Letters, 2005. 59:127-130.
    14. Mi CH, Z.X., Cao GS, Tu JP, In situ synthesis and properties of carbon-coated LiFePO4 as li-ion battery cathodes. Journal of the Electrochemical Society 2005. 152.
    15. Lu ZG, C.H., Lo MF, Chung CY, Pulsed Laser Deposition and Electrochemical Characterization of LiFePO4-Ag Composite Thin Films. Advanced Functional Materials, 2007. 17:3885-3896.
    16. Li C, Z.S., Cheng F, Ji W, Chen J, Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Research 2008. 1:242-248.
    17. Croce F, D.E.A., Hassoun J, Deptula A, Olczac T, Scrosati B, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters, 2002. 5.
    18. Liu XM, H.Z., Oh S, Ma PC, Chan PCH, Vedam GK, Kang K, Kim JK, Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. . Journal of Power Sources 2010. 195:4290-4296.
    19. Mizushima K, J.P., Wiseman PJ, Goodenough JB, LixCoO2 (0≦x≦1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980. 15:783-789
    20. Fey GT-K, M.P., Lu C-Z, Cho Y-D, Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochimica Acta, 2006. 51:4850-4858.
    21. 新エネルギー・産業技術総合開発機構 独. 2007, リチウム二次電池構成材料開発の状態と課題.
    22. 林素琴, 鋰電池材料發展分析. 工研院電子報 2009.
    23. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011. 289.
    24. Goodenough JB, K.Y., Challenges for rechargeable Li batteries. . Chemistry of Materials, 2010. 22:587-603.
    25. Zhang, S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    26. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc., 1979. 126: p. 2047.
    27. Lithium-Ion_Batteries_Solid-Electrolyte_Interphase., P.B. Balbuena and Y. Wang, Editors. 2004, Imperial College Press.
    28. Peled E., G.D., Ardel G., Menachem C., Bar-Tow D. and and E. V, Role of sei in lithium and lithium ion batteries Mat. Res. Soc. Symp., 1995. 393: p. 209-221.
    29. Peled E., G.D.a.P.J., Anode/Electrolyte Interface, in Handbook of Battery Materials, B.J. O., Editor 1998.
    30. Peled E., M.C., Bar-Tow D. and Melman A., improved graphite anode for lithium-ion batteries: Chemically bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc., 1996. 143(1): p. L4-L7.
    31. Wang, F.-M., et al., Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery. Journal of Membrane Science, 2011. 368(1-2): p. 165-170.
    32. S.S. Zhang, M.S.D., K. Xu, J. Allen, T.R. Jow, Understanding solid electrolyte interface film formation on graphite electrodes. Electrochem. Solid-State Lett., 2001. 4.
    33. S.S. Zhang, K.X., T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery Electrochim. Acta 2006. 51: p. 1636.
    34. S. Matsuta, T.A., K. Kitaura, Vibrational assignments of lithium alkyl carbonate and lithium alkoxide in the infrared spectra an ab initio MO study. J. Electrochem. Soc. 147 (2000) 1695, 2000. 147(1695).
    35. New Insight into the Interaction between Propylene Carbonate-Based Electrolytes and Graphite Anode Material for Lithium Ion Batteries
    36. Allyl cyanide as a new functional additive in propylenecarbonate-based electrolyte for lithium-ion batteries
    37. Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate
    38. High-Yield Synthesis of Few-Layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte
    39. B. Simon, J.P.B., U.S. Patent 5, 981, Editor 1997.
    40. J. Ufheil, M.C.B., A. W¨ursig, P. Novak, Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim. Acta 2005. 50(1733).
    41. Y. Ein-Eli, S.R.T., V.R. Koch, The role of SO2 as an additive to organic li-ion battery electrolytes J. Electrochem. Soc., 1997. 144(1159).
    42. Y. Ein-Eli, S.R.T., V.R. Koch, New electrolyte system for Li-ion battery J Electrochem. Soc. , 1996. 143: p. L195-L197.
    43. Ein-Eli, Y., Dithiocarbonic anhydride (CS2) - A new additive in Li-ion battery electrolytes. J. Electroanal. Chem, 2002. 531(1): p. 95-99.
    44. M.W.Wagner, C.L., J.O. Besenhard, Effect of polysulfide-containing electrolyte on the film formation of the negative electrode J. Power Sources, 1997. 68(2): p. 328-332.
    45. J.O. Besenhard, M.W.W., M.Winter, A.D. Jannakoudakis, P.D. Jannakoudakis,E. Theodoridou, Inorganic film-forming electrolyte additives improving the cycling behavior of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes J. Power Sources, 1993. 44: p. 413-420.
    46. R. Mogi, M.I., S.K. Jeong, Y. Iriyama, T. Abe, Z. Ogumia, Effects of some organic additives on lithium deposition in propylene carbonate J. Electrochem.Soc, 2002. 149(12): p. A1578-A1583.
    47. G.H. Wrodnigg, T.M.W., J.O. Besenhard, M. Winter, Propylene sulfite as film-forming electrolyte additive in lithium ion batteries J Electrochem.Commun., 1999. 1(3-4): p. 148-150.
    48. G.H. Wrodnigg, J.O.B., M. Winter, Cyclic and acyclic sulfites: New solvents and electrolyte additives for lithium ion batteries with graphitic anodes? . J. Power Sources 2001. 97-98: p. 592-594.
    49. G.H. Wrodnigg, J.O.B., M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes J. Electrochem. Soc. , 1999. 146(2): p. 470-472.
    50. H. Gan, E.S.T., in U.S. Patent 6,136,4772000.
    51. Z.X. Shu, R.S.M., J.J. Murray, I.J. Davidson, Use of chloroethylene carbonate as an electrolyte solvent for a graphite anode in a lithium-ion battery. J. Electrochem. Soc., 1996. 143(7): p. 2230-2235.
    52. Z.X. Shu, R.S.M., J.J. Murray, I.J. Davidson, Use of chloroethylene carbonate as an electrolyte solvent for a lithium ion battery containing a graphitic anode J. Electrochem. Soc., 1995. 142(9): p. L161-L162.
    53. R. McMillan, H.S., Z.X. Shu, W.D. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources, 1999. 81-82(20-26).
    54. A. Naji, J.G., P. Willmann, D. Billaud, New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries Electrochim. Acta, 2000. 45(12): p. 1893-1899.
    55. Y. Ein-Eli, B.M., D. Aurbach, Y. Carmeli, H. Yamin, S. Luski, The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition Electrochim. Acta 1994. 39(17): p. 2559-2569.
    56. J.O. Besenhard, P.C., M.W. Wanger, Mater. Sci. Forum, 1992. 91–93(647).
    57. B. Simon, J.P.B., M. Broussely, Electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents J. Power Sources 43–44 (1993) 65, 1993. 43–44(1 -3 pt 1): p. 65-74.
    58. G.V. Zhuang, H.Y., B. Blizanac, P.N. Ross Jr., A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy Electrochem. Solid-State Lett, 2005. 8(9): p. A441-A445.
    59. M.D. Levi , E.M., C. Wang,M. Koltypin,D. Aurbach, The effect of dimethyl pyrocarbonate on electroanalytical behavior and cycling of graphite electrodes J. Electrochem.Soc, 2004. 151(6): p. A848-A856.
    60. Lee, J.-T., Wu, M.-S., Wang, F.-M., Lin, Y.-W., Bai, M.-Y., Chiang, P.-C.J., Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries Journal of the Electrochemical Society, 2005. 152(9): p. A1837-A1843.
    61. Wang, C., Nakamura, H., Komatsu, H., Yoshio, M., Yoshitake, H., Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system Journal of Power Sources, 1998. 74(1): p. 142-145.
    62. Gong, J.B., Tsumura, T., Nakamura, H., Yoshio, M., Yoshitake, H., Abe, T. , Salt Lake City, UT, October 20-24 202nd ECS Meeting Abstracts, 2002. (Abstract No. 200)
    63. Xu, K., Zhang, S., Jow, T.R., Xu, W., Angell, C.A, LiBOB as salt for lithium-ion batteries. A possible solution for high temperature operation Electrochemical and Solid-State Letters, 2002. 5(1): p. A26-A29.
    64. Xu, K., Zhang, S., Poese, B.A., Jow, T.R, Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate Electrochemical and Solid-State Letters, 2002. 5(11): p. A259-A262.
    65. Zhang, S.S., Xu, K., Jow, T.R., Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating Journal of Power Sources, 2004. 129(2): p. 275-279.
    66. Xu, K., Lee, U., Zhang, S., Wood, M., Jow, T.R, Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes Electrochemical and Solid-State Letters, 2003. 6(7): p. A144-A148.
    67. K. Takechi, A.K., T. Shiga, in U.S. Patent 6,077,6282000.
    68. K. Takechi, T.S., in U.S. Patent 6,235,4312001.
    69. Amine, K., Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. Journal of Power Sources, 2004. 129(1): p. 14-19.
    70. Wu, K., Zhang, Y , Zeng, Y, Yang, J, Safety performance of lithium-ion battery. Progress in Chemistry 2011. 23(2-3): p. 401-409.
    71. Zhang, Z., Fouchard, D., Rea, J.R, Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells Journal of Power Sources, 1998. 70(1): p. 16-20.
    72. Maleki, H., Deng, G., Anani, A., Howard, J., Thermal stability studies of Li-ion cells and components. Journal of the Electrochemical Society, 1999. 146(9): p. 3224-3229.
    73. Andersson, A.M., Herstedt, M., Bishop, A.G., Edstrom, K., The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes Electrochimica Acta, 2002. 47(12): p. 1885-1898.
    74. Belharouak, I., Lu, W., Liu, J., Vissers, D., Amine, K., Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders Journal of Power Sources, 2007. 174(2): p. 905-909.
    75. Veluchamy, A., et al., Thermal analysis of LixCoO2 cathode material of lithium ion battery. Journal of Power Sources, 2009. 189(1): p. 855-858.
    76. MacNeil, D.D. and J.R. Dahn, The Reactions of Li[sub 0.5]CoO[sub 2] with Nonaqueous Solvents at Elevated Temperatures. Journal of The Electrochemical Society, 2002. 149(7): p. A912.
    77. Tobishima, S.-I., Yamaki, J.-I, A consideration of lithium cell safety Journal of Power Sources, 1999. 81-82: p. 882-886.
    78. Leising, R.A., Palazzo, M.J., Takeuchi, E.S., Takeuchi, K.J., A study of the overcharge reaction of lithium-ion batteries Journal of Power Sources, 2001. 97-98: p. 681-683.
    79. J.K. Feng, X.P.A., Y.L. Cao and H.X. Yang, Polytriphenylamine used as an electroactive separator material for overcharge protection of rechargeable lithium battery. Journal of Power Sources, 2006. 161(1): p. 545-549
    80. Ai, X.P., Cao, Y.L., Yang, H.X, Electrochemistry, 2010. 16(1): p. 6-10.
    81. Feng, X.M., Ai, X.P., Yang, H.X., A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries Electrochemistry Communications, 2004. 6(10): p. 1021-1024.
    82. Ha, H., et al., Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating. Electrochimica Acta, 2006. 51(16): p. 3297-3302.
    83. S. H. Kim, K.B.S., K. R. Han and C.S. Kim, Surface modification of Li(Co1/3 Mn1/3Ni 1/3)O2 fine powders using aqueous Al2O 3 sol. Materials Science Forum 2007. 544-545: p. 857-860
    84. H.J. Kweon, J.J.P., J.W. Seo, G.B. Kim, B.H. Jung, and H.S. Lim, Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO2 in a Li-ion cell. J. Power Sources, 2004. 126: p. 156–162.
    85. Yang, M.H., Practical Outlook of Technology and Product Developments for Li-ion Battery. 工業材料雜誌, 2011. 295.
    86. 林宗賢, 新型有機發光高分子之合成、能量轉移機制研究. 國立中央大學, 2004.
    87. Tomalia, D.A., D.M. Hedstrand, and M.S. Ferritto, Comb-burst dendrimer topology: new macromolecular architecture derived from dendritic grafting. Macromolecules, 1991. 24(6): p. 1435-1438.
    88. Tomalia, D.A., et al., NEW CLASS OF POLYMERS: STARBURST-DENDRITIC MACROMOLECULES. Polymer Journal, 1984. 17(1): p. 117-132.
    89. Norman Edward Searle, W., Del, SYNTHESIS OF N-ARYL-MALEIlUDES, 1946.

    QR CODE