簡易檢索 / 詳目顯示

研究生: Quoc-Thai Pham
Quoc-Thai Pham
論文名稱: Kinetics of polymerizations and degradations for modified bismaleimide-4,4'-diphenylmethane/barbituric acid and bisphenol A diglycidyl ether diacrylate/barbituric acid
Kinetics of polymerizations and degradations for modified bismaleimide-4,4'-diphenylmethane/barbituric acid and bisphenol A diglycidyl ether diacrylate/barbituric acid
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 黃延吉
Yan-Jyi Huang
邱文英
Wen-Yen Chiu
許榮木
Jung-Mu Hsu
潘金平
Jing-Pin Pan
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 142
中文關鍵詞: Bismaleimidebarbituric acidphenylsiloxanecoupling agentthermal propertiesorganofunctional polysiloxanesnon-isothermal degradation kineticsthermal stabilityepoxy diacrylatemicrogelradical polymerization kinetics.
外文關鍵詞: Bismaleimide, barbituric acid, phenylsiloxane, coupling agent, thermal properties, organofunctional polysiloxanes, non-isothermal degradation kinetics, thermal stability, epoxy diacrylate, microgel, radical polymerization kinetics.
相關次數: 點閱:313下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis includes five parts. In the first part, non-isothermal degradation kinetics of the cured polymer samples of N,N′-bismaleimide-4,4′-diphenylmethane (BMI)/barbituric acid (BTA) based polymers in the presence and absence of hydroquinone (HQ) were investigated by the thermogravimetric (TG) technique. By adding 5 wt% HQ into the BMI/BTA polymerization, the activation energy (E) of the thermal degradation process increased significantly in comparison with native BMI/BTA. The thermal degradation kinetics and mechanisms for the native BMI/BTA and BMI/BTA/HQ were quite different.
    In the second part, preparation and characterization of phenylsiloxane (PhSLX)-modified bismaleimide/barbituric acid based polymers with 3-aminopropyltriethoxysilane (APTES) as the coupling agent were investigated. The resultant hybrid polymers of BMI/BTA-APTES-PhSLX were characterized primarily by the thermogravimetric (TG) analysis in combination with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) measurements. The thermal stability of BMI/BTA oligomer was improved significantly by incorporation of a small amount (20-30 wt%) of the copolymer of PhSLX and APTES (PASi). After adequate post-curing reactions, the PASi-modified BMI/BTA oligomers (HYBRID20 and HYBRID30 containing 20 and 30 wt% PASi, respectively) exhibited the greatly reduced thermal degradation rates in the temperature rang 300-800 oC and the increased level of residues at 800 oC as compared to the native BMI/BTA oligomer.
    In the third part, the thermal stability of cured samples of organofunctional polysiloxanes including glycidyloxypropyl polysiloxane (GSLX160), aminopropyl polysiloxane (ASLX160), methacryloxypropyl polysiloxane (MSLX160) and vinyl polysiloxane (VSLX160) was investigated. The result showed that these ogranofunctional polysiloxanes showed very different weight loss-vs.-T profiles. As to VSLX160, the weight loss only decreased gradually beyond 450 oC, indicating its superior thermal stability as compared to other polysiloxanes. Thermal degradation was not observed in FTIR measurements for GSLX160, MSLX160 and VSLX160 subjected to thermal treatment at 300 oC over a period of 1 h. By contrast, the amino group-containing ASLX160 underwent degradation when it was treated at 300 oC for 1 h. These results showed that ASLX160 exhibited the worst thermal stability as compared to GSLX160, MSLX160 and VSLX160. The thermal degradation kinetics for GSLX160, ASLX160 and MSL160 were determined by the model-fitting method with the aid of a deconvolution technique. The degradation mechanisms determined for all organofunctional polysiloxanes were quite different.
    In the fourth part, non-isothermal radical polymerization kinetics for BTA/bisphenol A diglycidyl ether diacrylate (EA) and benzoyl peroxide (BPO)/EA (serving as the reference) in N-methyl-2-pyrrolidone (NMP) were investigated. The DSC data showed that the activation energy of the polymerization of EA initiated by BTA was much lower than that initiated by BPO. For polymerizations of BTA/EA and BPO/EA except BPO/EA = 3/100 (w/w), the reaction mechanism involving nucleation, followed by nucleus growth in the first stage was proposed. For the polymerization of BPO/EA [3/100 (w/w)], the reaction system was adequately described by the instantaneous nucleation and nucleus growth mechanisms in the first stage. Moreover, the nucleation and subsequent growth of microgel nuclei were primarily governed by the propagation reaction and diffusion-controlled termination reaction for the polymerization system of BTA/EA or BPO/EA. In the second stage (in the conversion range 0.75-0.9), the diffusion-controlled propagation and termination reactions governed the development of highly crosslinked macrogel (i.e., macroscopic agglomerate).
    Finally, non-isothermal degradation kinetics of cured polymer samples of BTA/EA and BPO/EA was studied. The cured polymer sample of BTA/EA exhibited an inferior thermal stability as compared to the BPO/EA counterpart (as the reference). The degradation kinetics for cured polymer samples of BTA/EA and BPO/EA were determined by the model-fitting method with the aid of a deconvolution technique. For the cured polymer sample of BTA/EA, the complex degradation process was described by the diffusion-controlled and reaction-controlled mechanisms in the first and second steps, respectively. For the sample of BPO/EA, the mechanism responsible for the first step of the degradation process was reaction-controlled. By contrast, the degradation process was described by the nucleation-controlled mechanism, followed by the multi-molecular decay law in the second step. The different degradation kinetics and mechanisms between cured polymer samples of BTA/EA and BPO/EA were attributed to their different crosslinked network structures.


    This thesis includes five parts. In the first part, non-isothermal degradation kinetics of the cured polymer samples of N,N′-bismaleimide-4,4′-diphenylmethane (BMI)/barbituric acid (BTA) based polymers in the presence and absence of hydroquinone (HQ) were investigated by the thermogravimetric (TG) technique. By adding 5 wt% HQ into the BMI/BTA polymerization, the activation energy (E) of the thermal degradation process increased significantly in comparison with native BMI/BTA. The thermal degradation kinetics and mechanisms for the native BMI/BTA and BMI/BTA/HQ were quite different.
    In the second part, preparation and characterization of phenylsiloxane (PhSLX)-modified bismaleimide/barbituric acid based polymers with 3-aminopropyltriethoxysilane (APTES) as the coupling agent were investigated. The resultant hybrid polymers of BMI/BTA-APTES-PhSLX were characterized primarily by the thermogravimetric (TG) analysis in combination with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) measurements. The thermal stability of BMI/BTA oligomer was improved significantly by incorporation of a small amount (20-30 wt%) of the copolymer of PhSLX and APTES (PASi). After adequate post-curing reactions, the PASi-modified BMI/BTA oligomers (HYBRID20 and HYBRID30 containing 20 and 30 wt% PASi, respectively) exhibited the greatly reduced thermal degradation rates in the temperature rang 300-800 oC and the increased level of residues at 800 oC as compared to the native BMI/BTA oligomer.
    In the third part, the thermal stability of cured samples of organofunctional polysiloxanes including glycidyloxypropyl polysiloxane (GSLX160), aminopropyl polysiloxane (ASLX160), methacryloxypropyl polysiloxane (MSLX160) and vinyl polysiloxane (VSLX160) was investigated. The result showed that these ogranofunctional polysiloxanes showed very different weight loss-vs.-T profiles. As to VSLX160, the weight loss only decreased gradually beyond 450 oC, indicating its superior thermal stability as compared to other polysiloxanes. Thermal degradation was not observed in FTIR measurements for GSLX160, MSLX160 and VSLX160 subjected to thermal treatment at 300 oC over a period of 1 h. By contrast, the amino group-containing ASLX160 underwent degradation when it was treated at 300 oC for 1 h. These results showed that ASLX160 exhibited the worst thermal stability as compared to GSLX160, MSLX160 and VSLX160. The thermal degradation kinetics for GSLX160, ASLX160 and MSL160 were determined by the model-fitting method with the aid of a deconvolution technique. The degradation mechanisms determined for all organofunctional polysiloxanes were quite different.
    In the fourth part, non-isothermal radical polymerization kinetics for BTA/bisphenol A diglycidyl ether diacrylate (EA) and benzoyl peroxide (BPO)/EA (serving as the reference) in N-methyl-2-pyrrolidone (NMP) were investigated. The DSC data showed that the activation energy of the polymerization of EA initiated by BTA was much lower than that initiated by BPO. For polymerizations of BTA/EA and BPO/EA except BPO/EA = 3/100 (w/w), the reaction mechanism involving nucleation, followed by nucleus growth in the first stage was proposed. For the polymerization of BPO/EA [3/100 (w/w)], the reaction system was adequately described by the instantaneous nucleation and nucleus growth mechanisms in the first stage. Moreover, the nucleation and subsequent growth of microgel nuclei were primarily governed by the propagation reaction and diffusion-controlled termination reaction for the polymerization system of BTA/EA or BPO/EA. In the second stage (in the conversion range 0.75-0.9), the diffusion-controlled propagation and termination reactions governed the development of highly crosslinked macrogel (i.e., macroscopic agglomerate).
    Finally, non-isothermal degradation kinetics of cured polymer samples of BTA/EA and BPO/EA was studied. The cured polymer sample of BTA/EA exhibited an inferior thermal stability as compared to the BPO/EA counterpart (as the reference). The degradation kinetics for cured polymer samples of BTA/EA and BPO/EA were determined by the model-fitting method with the aid of a deconvolution technique. For the cured polymer sample of BTA/EA, the complex degradation process was described by the diffusion-controlled and reaction-controlled mechanisms in the first and second steps, respectively. For the sample of BPO/EA, the mechanism responsible for the first step of the degradation process was reaction-controlled. By contrast, the degradation process was described by the nucleation-controlled mechanism, followed by the multi-molecular decay law in the second step. The different degradation kinetics and mechanisms between cured polymer samples of BTA/EA and BPO/EA were attributed to their different crosslinked network structures.

    - Incorporation of 20 wt% phenylsiloxane oligomer into the BMI/BTA oligomer with aminopropyltriethoxy silane as the coupling agent greatly enhances the thermal properties of resulting hybrid polymer. This then greatly increased the activation energy of the thermal decomposition process and decreased the degradation rate constant, thereby leading to the enhanced thermal stability. - Incorporation of 5 wt% hydroquinone into the the BMI/BTA polymerization, the activation energy of the thermal degradation process increases significantly, thereby leading to the greatly improved the thermal stability. -Activation energy of pyrolysis for organofunctional polysiloxanes determined. Aminopropyl polysiloxane showed the worst thermal stability.Deconvolution successfully used to separate individual degradation peaks.Kinetic parameters obtained from both model-free and model-fitting methods. Valuable pyrolysis data base established for organofunctional polysiloxanes. -EA/BTA radical polymerization kinetics studied via model-fitting method. Hydroquinone used as a probe to study EA/BTA polymerization mechanisms. Major differences between BTA and BPO in initiating EA polymerization illustrated. A mechanism involving nucleation and growth of microgel nuclei proposed.Microgel formation governed by propagation and diffusion-controlled termination. Non-isothermal degradation kinetics for cured EA-based polymers studied.Kinetic parameters for degradation of cured EA-based polymers determined.Deconvolution successfully used to characterize complex degradation process. Cured polymer of BTA/ EA showed worse thermal stability than BPO/EA.Degradation kinetics closely related to crosslinked network structures.

    References of Chapter 1

    [1] J.K. Fink, Reactive polymers fundamentals and applications, 2nd Edition (2013), Ch 11.
    [2] M.F. Grenier-Loustalot, F. Gouarderes, F. Joubert, P. Grenier, Polymer 34 (1993) 3848-3859
    [3] N. Tsubokawa, N. Shibata, Y. Sone, J. Polym. Sci. Part A: Polym. Chem. 21 (1983) 425-43.
    [4] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, J. Appl. Polym. Sci. 117 (2010) 596-603.
    [5] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, F.E. Yu, C.S. Chern, Polym. Eng. Sci. 51 (2011) 1188-1197.
    [6] B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Prog. Polym. Sci. 31 (2006) 487-531.
    [7] F.E. Yu, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Polym. Eng. Sci. 53 (2013) 204-211.
    [8] J.P. Pan, G.Y. Shiau, S.S. Lin, K.M. Chen, J. Appl. Polym. Sci. 45 (1992) 103-109.
    [9] V. Kumar, Y.K. Bhardwaj, N.K. Goel, S. Francis, K.A. Dubey, C.V. Chaudhari, K.S.S. Sarma, S. Sabharwal, Surf. Coat. Techn. 202 (2008) 5202-5209.
    [10] M.S. Lin, M.W. Wang, L. A. Cheng, Polym. Degrad. Stab. 66 (1999) 343-347.
    [11] C.H. Park, S.W. Lee, J.W. Park, H.J. Kim, React. Funct. Polym. 73 (2013) 641-646.
    [12] Y. Zhang, W. Xu, G. Liu, D. Qiu, S. Su, J. Appl. Polym. Sci. 111 (2009) 813-818.
    [13] J. Hao, L. Jiang, X. Cai, Polymer 37 (1996) 3721-3727.
    [14] E.A. Kirichenko, B.A. Markov, A.D. Damayeva, V.V. Grigorev, Polym. Sci. USSR 18 (1976) 1726-1734.
    [15] W. Zhou, H. Yang, X. Guo, J. Lu, Polym. Degrad. Stab. 91 (2006) 1471-1475.
    [16] D. Zhuo, A. Gu, G. Liang, J.T. Hut, L. Cao, L. Yuan, Polym. Degrad. Stab. 96 (2011) 505-514.
    [17] K.C. Vrancken, K. Possemiers, P. Van Der Voort, E.F. Vansant, Colloids Surf. A 98 (1995) 235-241.
    [18] U. Goerl, A. Hunsche, A. Mueller, H.G. Koban, Rubb. Chem. Technol. 70 (1997) 608-623.
    [19] M.W. Daniels, L.F. Francis, J. Colloid Interface Sci. 205 (1998) 191-200.
    [20] Y. Li, J. Yu, Z.X. Guo, J. Appl. Polym. Sci. 84 (2002) 827-834.
    [21] H.L. Su, J.M. Hsu, J.P. Pan, C.S. Chern, J. Appl. Polym. Sci. 103 (2007) 3600–3608.
    [22] E. Pere, H. Cardy, V. Latour, S. Lacombe, J. Colloid Interface Sci. 281 (2005) 410-416.
    [23] Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Composites: Part A 41 (2010) 806–819.

    References of Chapter 2
    [1] L.R. Dix, J.R. Ebdon, N.J. Flint, P. Hodge, R. O'Dell , Eur. Polym. J. 31 (1995) 647-652.
    [2] M.F. Grenier-Loustalot, L.D. Cunha, Polymer 39 (1998) 1799-1814.
    [3] Z. Shen, J.R. Schlup, L.T. Fan, J. Appl. Polym. Sci. 69 (1998) 1019-1027.
    [4] X. Zhang, F.S. Du, Z.C. Li, F.M. Li, Macromol. Rapid Commum. 22 (2001) 983-987.
    [5] Y.L. Liu, S.H. Tsai, C.S. Wu, R.J. Jeng, J. Polym. Sci. Part A: Polym. Chem. 42 (2004) 5921-5928.
    [6] M. Sava, C.V. Grigoras, J. Macromol. Sci. Part A: Pure appl. Chem 42 (2005) 1095-108.
    [7] J.P. Pan, G.Y. Shiau, S.S. Lin, K.M. Chen, J. Appl. Polym. Sci. 45 (1992) 103-109.
    [8] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, J. Appl. Polym. Sci. 117 (2010) 596-603.
    [9] K. Dusek, L. Matejka, R. Spacek, H. Winter, Polymer 37 (1996) 2233-2242.
    [10] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, F.E. Yu, C.S. Chern, Polym. Eng. Sci. 51 (2011) 1188-1197.
    [11] X. Liu, D. Chen, X. Yang, L. Lu, X. Wang, Eur. Polym. J. 36 (2000) 2291-2295.
    [12] C.S. Chern, H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, SPEPRO (2011), 10.2417/spepro.003621.
    [13] F.E. Yu, J.M. Hsu, J.P. Pan, T.H. Wang, C.S Chern, Polym. Eng. Sci. 53 (2013) 204-211.
    [14] S. Vyazovkin, A.K. Burmham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1-19.
    [15] Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Polym. Int. 62 (2013) 1045-1052.
    [16] A.C. Lua, J.C. Su, Polym. Degrad. Stab. 91 (2006) 144-153.
    [17] I.M. Salin, J.C. Seferis, J. Appl. Polym. Sci. 47(1993) 847-856.
    [18] J.T. Sun, Y.D. Huang, G.F. Gong, H.L. Cao, Polym. Degrad. Stab. 91 (2006) 339-346.
    [19] L.A. Perez-Maqueda, J.M. Criado, P.E. Sanchez-Jimenez, J. Phys. Chem. A 110 (2006) 12456-12462.
    [20] S. Vyazovkin, N. Sbirrazzuoli, Macromol. Rapid Commun. 27 (2006) 1515-1532.
    [21] A. Khawam, D.R. Fanagan, J. Phys. Chem. B 110 (2006) 17315-17328.
    [22] J. Sestak, G. Berggern, Thermochim. Acta 3 (1971) 1-12.
    [23] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, J. Phys. Chem. C 116 (2012) 11797-11807.
    [24] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, Polym. Degrad. Stab. 95 (2010) 733-739.
    [25] N. Sbirrazzuoli, L. Vincent, A. Mija, N. Guigo, Chemom. Intell. Lab. Syst. 96 (2009) 219-226.

    References of Chapter 3
    [1] L.R. Dix, J.R. Ebdon, N.J. Flint, P. Hodge, R. O'Dell , Eur. Polym. J. 31 (1995) 647-652.
    [2] M.F. Grenier-Loustalot, L.D. Cunha, Polymer 39 (1998) 1799-1814.
    [3] Z. Shen, J.R. Schlup, L.T. Fan, J. Appl. Polym. Sci. 69 (1998) 1019-1027.
    [4] X. Zhang, F.S. Du, Z.C. Li, F.M. Li, Macromol. Rapid Commum. 22 (2001) 983-987.
    [5] Y.L. Liu, S.H. Tsai, C.S. Wu, R.J. Jeng, J. Polym. Sci. Part A: Polym. Chem. 42 (2004) 5921-5928.
    [6] M. Sava, C.V. Grigoras, J. Macromol. Sci. Part A: Pure appl. Chem 42 (2005) 1095-108.
    [7] J.P. Pan, G.Y. Shiau, S.S. Lin, K.M. Chen, J. Appl. Polym. Sci. 45 (1992) 103-109.
    [8] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, J. Appl. Polym. Sci. 117 (2010) 596-603.
    [9] K. Dusek, L. Matejka, R. Spacek, H. Winter, Polymer 37 (1996) 2233-2242.
    [10] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, F.E. Yu, C.S. Chern, Polym. Eng. Sci. 51 (2011) 1188-1197.
    [11] X. Liu, D. Chen, X. Yang, L. Lu, X. Wang, Eur. Polym. J. 36 (2000) 2291-2295.
    [12] H.L. Su, J.M. Hsu, J.P. Pan, C.S. Chern, J. Appl. Polym. Sci. 103 (2007) 3600-3608.
    [13] J. Hao, L. Jiang, X. Cai, Polymer 37 (1996) 3721-3727.
    [14] E.A. Kirichenko,B.A. Markov,A.D. Damayeva, V.V. Grigorev, Polym. Sci. USSR. 18 (1976) 1726-1734.
    [15] W. Zhou, H. Yang, X. Guo, J. Lu J, Polym. Degrad. Stab. 91 (2006) 1471-1475.
    [16] D. Zhuo, A. Gu, G. Liang, J.T. Hut,L. Cao, L. Yuan, Polym. Degrad. Stab. 96 (2011) 505-514.
    [17] M. Kuniyoshi, M. Takahashi, Y. Tokuda, T. Yoko, J. Sol-Gel Sci. Technol. 39 (2006) 175-183.
    [18] S.D. Korkin, M.I. Buzin, E.V. Matukhina, L.N. Zherlitsyna, N. Auner, O.I. Shchegolikhina, J. Organomet. Chem. 686 (2003) 313-320.
    [19] L.J. Tyler, J. Amer. Chem. Soc. 77 (1955) 770-771.
    [20] F. Beari, M. Brand, P. Jenkner, R. Lehnert, H.J. Metternich, J. Monkiewicz, J. Monkiewicz, H.W. Siesler, J. Organomet. Chem. 625 (2001) 208-216.
    [21] J.E. Gambogi, F.D. Blum, Macromolecules 25 (1992) 4526-4534.
    [22] Y.S. Li, Y. Wang, S. Ceesay, Spectrochim. Acta, Part A 71 (2009) 1819-1824.
    [23] P. Vejayakumaran, I.A. Rahman, C.S. Sipaut, J. Ismail, C.K. Chee, J. Colloid. Interf. Sci. 328 (2008) 81-91.
    [24] B. Stuart. Infrared spectroscopy: fundamentals and applications: John Wiley, Chichester, pp 83-84 (2004).
    [25] D.B. Curliss, B.A. Cowans, J.M. Caruthers, Macromolecules 31 (1998) 6776-6782.
    [26] H.E. Kissinger, Anal. Chem. 29 (1957) 1702-1706.
    [27] J.B. Badia, L. Santonja-Blasco, R. Moriana, A. Ribes-Greus, Polym. Degrad. Stab. 95 (2010) 2192-2199.
    [28] I.M. Salin, J.C. Seferis, J. Appl. Polym. Sci. 47(1993) 847-856.
    [29] N. Regnier, B. Mortaigne, Polym. Adv. Technol. 5 (1994) 513-520.
    [30] R. Torrecillas, N. Regnier, B. Mortaigne, Polym. Degrad. Stab. 51 (1996) 307-318.

    References of Chapter 4
    [1] K.C. Vrancken, K. Possemiers, P. Van Der Voort, E.F. Vansant, Colloids Surf. A 98 (1995) 235-241.
    [2] U. Goerl, A. Hunsche, A. Mueller, H.G. Koban, Rubb. Chem. Technol. 70 (1997) 608-623.
    [3] M.W. Daniels, L.F. Francis, J. Colloid Interface Sci. 205 (1998) 191-200.
    [4] Y. Li, J. Yu, Z.X. Guo, J. Appl. Polym. Sci. 84 (2002) 827-834.
    [5] H.L. Su, J.M. Hsu, J.P. Pan, C.S. Chern, J. Appl. Polym. Sci. 103 (2007) 3600–3608.
    [6] E. Pere, H. Cardy, V. Latour, S. Lacombe, J. Colloid Interface Sci. 281 (2005) 410-416.
    [7] Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Composites: Part A 41 (2010) 806–819.
    [8] Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Polym. Int. 62 (2013) 1045-1052.
    [9] A. Khawam, D.R. Planagan, J. Phys. Chem. B. 110 (2006) 17315-17328.
    [10] S. Vyazovkin, A.K. Burmham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim Acta 520 (2011) 1-19.
    [11] L.A. Perez-Maqueda, J.M. Criado, P.E. Sanchez-Jimenez, J. Phys. Chem. A 110 (2006) 12456-12462.
    [12] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, Polym. Degrad. Stab. 95 (2010) 733-739.
    [13] S. Vyazovkin, N. Sbirrazzuoli, Macromol. Rapid Commun. 27 (2006) 1515-1532.
    [14] A. Perejon, P.E. Sanchez-Jimenez, J.M. Criado, L.A. Perez-Maqueda, J. Phys. Chem. B 115 (2011) 1780-1791.
    [15] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, J. Phys. Chem. C 116 (2012) 11797-11807.
    [16] N. Koga, Y. Suzuki, T. Tatsuoka, J. Phys. Chem. B 116 (2012), 14477-14486.
    [17] N. Koga, S. Yamada, T. Kimura, J. Phys. Chem. C 117 (2013), 326-336.
    [18] N. Koga,Y. Goshi, S. Yamada, L. A. Perez-Maqueda. J. Therm. Anal. Calorim. 111 (2013), 1463-1474.
    [19] T. Wada, N. Koga, J. Phys. Chem. A 117 (2013), 1880-1889.
    [20] F. Beari, M. Brand, P. Jenkner, R. Lehnert, H.J. Metternich, J. Monkiewicz, H.W. Siesler, J. Organomet. Chem. 625 (2001) 208-216.
    [21] Y. Abe, T. Namiki, K. Tuchida, Y. Nagao, T. Misono, J. Non-Cryst. Solids, 147-148 (1992) 47-51.
    [22] G. Brusatin, G.D. Giustina, M. Guglielmi, P. Innocenzi, Prog. Solid State Chem. 34 (2006) 223-229.
    [23] L. Yanga, J. Feng, W. Zhang, J. Qu, Appl. Surf. Sci. 257 (2010) 990-996.
    [24] P. Vejayakumaran, I.A. Rahman, C.S. Sipaut, J. Ismail, C.K. Chee, J. Colloid Interface Sci. 328 (2008) 81-91.
    [25] B. Stuart, Infrared spectroscopy: fundamentals and applications, John Wiley, Chichester, (2004).
    [26] I. M. Sapic, L. Bistricic, V. Volovsek, V. Dananic, K. Furic, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 72 (2009) 833-840.
    [27] S.W. Benson, Bond energies, J. Chem. Educ. 42 (1965) 502-518
    [28] J.A. Kerr, Chem. Rev. 66 (1966) 465-500.
    [29] G. Li, M. Kanezashi, T. Tsuru, J. Membr Sci. 379 (2011) 287- 295.
    [30] C.H. Chiang, H. Ishida, J.L. Koenig, J. Colloid Interface Sci. 74 (1980) 396-404.
    [31] Y.S. Li, P.B. Wright, R. Puritt, T. Tran, Spectrochim. Acta, Part A 60 (2004) 2759-2766.
    [32] J. Sestak, G. Berggern, Thermochim Acta 3 (1971) 1-12.

    References of Chapter 5
    [1] V. Kumar, Y.K. Bhardwaj, N.K. Goel, S. Francis, K.A. Dubey, C.V. Chaudhari, K.S.S. Sarma, S. Sabharwal, Surf. Coat. Techn. 202 (2008) 5202-5209.
    [2] M.S. Lin, M.W. Wang, L.A. Cheng, Polym. Degrad. Stab. 66 (1999) 343-347.
    [3] C.H. Park, S.W. Lee, J.W. Park, H.J. Kim, React. Funct. Polym. 73 (2013) 641-646.
    [4] B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Prog. Polym. Sci. 31 (2006) 487-531.
    [5] N. Tsubokawa, N. Shibata, Y. Sone, J. Polym. Sci. Part A: Polym. Chem. 21 (1983) 425-433.
    [6] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, F.E. Yu, C.S. Polym. Eng. Sci. 51 (2011) 1188-1197.
    [7] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, J. Appl. Polym. Sci. 117 (2010) 596-603.
    [8] C.S. Chern, H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, SPEPRO (2011), 10.2417/spepro.003621.
    [9] Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Polym. Int. 62 (2013) 1045-1052.
    [10] F.E. Yu, J.M. Hsu, J.P. Pan, T.H. Wang, C.S Chern, Polym. Eng. Sci. 53 (2013) 204-211.
    [11] S. Vyazovkin, A.K. Burmham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1-19.
    [12] J. Sestak, G. Berggern, Thermochim. Acta 3 (1971) 1-12.
    [13] S. Vyazovkin, N. Sbirrazzuoli, Macromol. Rapid Commun. 27 (2006) 1515-1532.
    [14] E.P.L. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27 (1998) 413-656.
    [15] K. Matyjaszewski, T.P. Davis, Hand book of radical polymerization, John Wiley and Sons, New York, (2002) pp. 187-221.
    [16] C.S. Chern, Polym. Plast. Technol. Eng. 29 (1990) 577-591.
    [17] Q.T. Pham, C.S. Chern, Thermochim. Acta 565 (2013) 114-123.
    [18] T. Wada, N. Koga, J. Phys. Chem. A 117 (2013), 1880-1889.
    [19] N. Koga, Y. Suzuki, T. Tatsuoka, J. Phys. Chem. B 116 (2012), 14477-14486.
    [20] N. Koga, S. Yamada, T. Kimura, J. Phys. Chem. C 117 (2013), 326-336.
    [21] N. Koga,Y. Goshi, S. Yamada, L.A. Perez-Maqueda, J. Therm. Anal. Calorim. 111 (2013), 1463-1474.
    [22] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, J. Phys. Chem. C 116 (2012) 11797-11807.
    [23] W. Funke, Br. Polym. J. 21 (1989) 107-115.
    [24] O. Okay, W. Funk, Makcromol. Chem. 1991 (1990) 1565-1573.
    [25] A.K. Burnham, R.K. Weese, B.L. Weeks, J. Phys. Chem. B 108 (2004) 19432-19441.
    [26] A. Khawam, D.R. Fanagan, J. Phys. Chem. B 110 (2006) 17315-17326.
    [27] A.K. Burnham, R.L. Braun, Energy fuels 13 (1999) 1-22.
    [28] L.A. Perez-Maqueda, J.M. Criado, J. Phys. Chem. A 110 (2006) 12456-12462.
    [29] Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, J. Appl. Polym. Sci. (2013), http://dx.doi.org/10.1002/app.39360.

    References of Chapter 6
    [1] V. Kumar, Y.K. Bhardwaj, N.K. Goel, S. Francis, K.A. Dubey, C.V. Chaudhari, K.S.S. Sarma, S. Sabharwal, Surf. Coat. Techn. 202 (2008) 5202-5209.
    [2] M.S. Lin, M.W. Wang, L. A. Cheng, Polym. Degrad. Stab. 66 (1999) 343-347.
    [3] C.H. Park, S.W. Lee, J.W. Park, H.J. Kim, React. Funct. Polym. 73 (2013) 641-646.
    [4] Y. Zhang, W. Xu, G. Liu, D. Qiu, S. Su, J. Appl. Polym. Sci. 111 (2009) 813-818.
    [5] N. Tsubokawa, N. Shibata, Y. Sone, J. Polym. Sci. Part A: Polym. Chem. 21 (1983) 425-433.
    [6] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, F.E. Yu, C.S. Chern, Polym. Eng. Sci. 51 (2011) 1188-1197.
    [7] H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Appl. Polym. Sci. 117 (2010) 596-603.
    [8] C.S. Chern, H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, SPEPRO (2011), 10.2417/spepro.003621.
    [9] Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Polym. Int. 62 (2013) 1045-1052.
    [10] Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Thermochimica. Acta, submitted.
    [11] A. Khawam, D.R. Planagan, J. Phys. Chem. B 110 (2006) 17315-17328.
    [12] S. Vyazovkin, A.K. Burmham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1-19.
    [13] L.A. Perez-Maqueda, J.M. Criado, P.E. Sanchez-Jimenez, J. Phys. Chem. A 110 (2006) 12456-12462.
    [14] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, Polym. Degrad. Stab. 95 (2010) 733-739.
    [15] S. Vyazovkin, N. Sbirrazzuoli, Macromol. Rapid Commun. 27 (2006) 1515-1532.
    [16] A. Perejon, P.E. Sanchez-Jimenez, J.M. Criado, L.A. Perez-Maqueda, J. Phys. Chem. B 115 (2011) 1780-1791.
    [17] Q.T. Pham, C.S. Chern, Thermochim. Acta 565 (2013) 114-123.
    [18] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, J. Phys. Chem. C 116 (2012) 11797-11807.
    [19] N. Koga, Y. Suzuki, T. Tatsuoka, J. Phys. Chem. B 116 (2012), 14477-14486.
    [20] N. Koga, S. Yamada, T. Kimura, J. Phys. Chem. C 117 (2013), 326-336.
    [21] N. Koga,Y. Goshi, S. Yamada, L. A. Perez-Maqueda, J. Therm. Anal. Calorim. 111 (2013), 1463-1474.
    [22] T. Wada, N. Koga, J. Phys. Chem. A 117 (2013), 1880-1889.
    [23] J. Sestak, G. Berggern, Thermochim. Acta 3 (1971) 1-12.

    無法下載圖示 全文公開日期 2016/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE