簡易檢索 / 詳目顯示

研究生: 施威宇
Wei-Yu Shih
論文名稱: 以實驗室自製橡膠拋光工具於機器手臂進行模具鋼定力拋光研究
Research on the surface polishing of the STAVAX mold steel with constant force control using lab-made polishing tools on a robot
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 林其禹
Chyi-Yeu Lin
郭俊良
Chun-Liang Kuo
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 183
中文關鍵詞: 六軸機械手臂自由曲面拋光定力控制PID控制器田口計劃法
外文關鍵詞: 6-axis robotic arm, free form surface polishing, constant force control, PID controller, Taguchi planning method
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討自製拋光工具對STAVAX模具鋼於機械手臂進行即時定力拋光研究,以即時定力控制系統配合防過載治具之行程,限制拋光力,減少力量起伏之問題,達成表面均勻拋光效果;本研究以田口計畫法探討自製拋光橡膠體對STAVAX模具鋼建議拋光參數,並應用於試件平面及具有凹凸輪廓之自由曲面,依試件外型選用不同拋光工具及拋光道次,為實現一種拋光工具智慧選用方法。
    本研究為透過計算力量目標值與彈簧K值間位移關係式,將其計算出結果設定為滑槽行程,進行防過載裝置拋光治具之研製;從驗證實驗可知,藉由滑槽行程之限制,能有效限制最大拋光力量。
    本研究採用之定力控制為簡易PID控制,由壓深實驗得到初步之KP值,再由實驗進行參數調整,可得到各種橡膠拋光體其控制參數為:直徑40 mm橡膠拋光參數為KP 0.025、KI 0.015、KD 0;直徑20 mm橡膠拋光柱KP 0.02、KI 0.005、KD 0;直徑20 mm橡膠拋光球KP 0.1、KI 0、KD 0。
    本研究參考先期研究最佳球擠光參數,以潤滑油為變數進行測試,得到殼牌68號滑道油對表面粗糙度改善較高,試件平面之表面粗糙度可降至R_a 0.036 μm。以田口計劃法求出橡膠拋光體之最佳拋光參數,應用於平面拋光之直徑40 mm橡膠拋光柱建議參數為:粒徑0.3 μm、轉速 5600 rev/min、進給率0.1 mm/min、拋光力6 N;應用於自由曲面拋光為直徑20 mm橡膠拋光柱、球。將最佳拋光參數應用於平面及自由曲面,拋光後試件平面表面粗糙度由R_a 0.036 μm降至R_a 0.02 μm;自由曲面經拋光柱、多道次球拋光後表面粗糙度由R_a 0.185 μm降至R_a 0.04 μm、R_a 0.02 μm。
    與先期研究相比,平面於擠光後表面粗糙度改善R_a 0.03 μm,平面及自由曲面於拋光後表面粗糙度分別改善R_a 0.01 μm、R_a 0.02 μm,證實改良治具及使用即時定力控制能夠有效改善表面粗糙度。


    The aim of this study is to investigate the effects of a lab-made polishing tools on the real-time force-controlled polishing of STAVAX mold steel using a six-axis industrial robot. A real-time force control system with a modified overload prevention fixture has been developed to restrict the polishing force and to improve the problem of force fluctuations, resulting in a uniform polishing effect. The Taguchi method was applied to investigate the recommended polishing parameters for the lab-made polishing tools for the STAVAX mold steel. Different polishing tools and polishing sequences were selected according to the shape of the specimen, to achieve an intelligent selection method.
    An overload prevention fixture has been designed and fabricated in this study. Based on the displacement relationship between the force target value and the spring (K value), the suitable stroke of the sliding slot was calculated. From the experimental results, it can be shown that the maximum polishing force can be effectively limited by setting the stroke of the sliding slot.
    The PID controller has been adopted in this work for constant force polishing. The preliminary KP value was obtained from the pressure depth experiment, and the parameters were adjusted through the polishing experiment. The parameters for the cylindrical polishing tool with a diameter of 40 mm are KP 0.025, KI 0.015, KD 0; for the cylindrical polishing tools with a diameter of 20 mm, the parameters are KP 0.02, KI 0.005, KD 0; for the spherical polishing tools with a diameter of 20 mm, the parameters are KP 0.1, KI 0, KD 0.
    Referring to previous studies on the optimal ball burnishing parameters, the lubrication oil was used as a variable for testing. The Shell hydraulic oil of No. 68 was found to have a higher improvement on surface roughness, reducing the surface roughness of the specimen with plane surface from Ra 0.066 μm to Ra 0.036 μm. The Taguchi method was applied to determine the optimal polishing parameters for the polishing tool. For the flat plane polishing using a cylindrical polishing tool with the diameter of 40 mm, the recommended parameters were the particle size of 0.3 μm, rotation speed of 5600 rev/min, feed rate of 0.1 mm/min, and polishing force of 6 N.
    The optimal polishing parameters have been applied to both the flat and freeform surfaces. The surface roughness of the plane specimen was improved from Ra 0.036 μm to Ra 0.02 μm after polishing. The surface roughness of the freeform surface area has also been improved. After the surface finishing using the cylindrical polishing tool and multiple-pass ball polishing, the surface roughness of the specimen was reduced from Ra 0.185 μm to Ra 0.04 μm and Ra 0.02 μm, respectively. Compared with the previous studies, the surface roughness of the flat specimen was improved by Ra 0.03 μm after ball burnishing, and the surface roughness of the flat and freeform surfaces was improved by Ra 0.01 μm and Ra 0.02 μm after polishing. According to the experimental results, it can be confirmed that the surface roughness of the test specimen can be effectively improved by modifying the fixtures and using real-time force control.

    摘要 I Abstract III 誌謝 VI 目錄 VII 圖索引 XII 表索引 XVI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究方法與論文架構 11 第二章 相關理論介紹 13 2.1 擠光加工原理 13 2.1.1 擠光力 13 2.1.2 進給率 14 2.1.3 間距 14 2.1.4 擠光球材質 15 2.2 拋光加工原理 15 2.2.1 磨料 16 2.2.2 轉速 16 2.2.3 進給率 17 2.2.4 間距 17 2.2.5 壓深 17 2.3 表面粗糙度【28】 18 2.3.1表面粗糙度定義 19 2.3.2 表面粗糙度參數表示法【33】【34】 20 2.4 機器人運動學【35】 23 2.4.1 齊次座標轉換矩陣 23 2.4.2 轉動矩陣 24 2.4.3 D-H表示法 25 2.4.4 順向運動學( Direct Kinematics) 26 2.4.5 逆向運動學( Inverse Kinematics ) 27 2.5 PID控制【37】【38】【39】 31 第三章 田口實驗計畫法與定力控制 32 3.1 田口實驗計畫法簡介 32 3.2 參數設計 32 3.3 因子之分類 33 3.3.1 干擾因子( Noise Factor ) 33 3.3.2 信號因子( Signal Factor ) 34 3.3.3 控制因子( Control Factor ) 34 3.3.4 品質損失函數 34 3.4 直交表(Orthogonal Array ) 【37】【39】 36 3.5 信號雜訊比( Signal to Noise Ratio ) 38 3.6 變異數分析( Analysis Of Variation;ANOVA ) 39 3.7 最適條件下之最佳估計值及確認實驗 41 3.8 定力控制方法 42 3.8.1 定力拋光程式運作流程 42 3.8.2 定力控制方法 45 3.8.3 定力控制應用 45 3.8.4 重力項補償 47 第四章 實驗方法與程序 49 4.1 實驗方法 49 4.2 實驗試件設計 54 4.2.1橡膠拋光工具模具設計 54 4.2.2 實驗試件之簡介與特性【44】 56 4.2.3 平面加工設計 57 4.2.4 平面、曲面組合試件 58 4.2.5 防過載裝置拋光治具之研製 59 4.3 實驗設備 61 4.3.1 三軸中心加工機 61 4.3.2 五軸中心加工機 62 4.3.3 場發射雙束型聚焦離子束顯微鏡 63 4.3.4 自動熱壓成型機 64 4.3.5 六軸機械手臂 64 4.3.6 力量及力矩感測器 65 4.3.7 內建荷重計擠光工具 66 4.3.8 電動研磨機 68 4.3.9 自製內含氧化鋁粉之橡膠拋光體 69 4.3.10 Z軸設定器與光電尋邊器 70 4.3.11 表面粗糙度量測儀 70 4.3.12 工具顯微鏡 72 4.3.13 快速定位夾具 73 4.3.14 硬度計 74 4.4 資訊系統 74 4.5 實驗規劃 76 第五章 實驗結果與分析 78 5.1 擠光加工實驗 78 5.1.1 油品對於擠光加工後表面粗糙度影響之探討 78 5.1.2 擠光道次對表面粗糙度及表面硬度影響之探討 79 5.2 拋光加工田口實驗 82 5.2.1 訊噪比 85 5.2.2 ANOVA變異數分析 91 5.2.3 表面粗糙度預估值 97 5.3 拋光加工參數對表面粗糙度影響之探討 102 5.3.1 拋光工具之氧化鋁粉粒徑 102 5.3.2 轉速 102 5.3.3 進給率 103 5.3.4 拋光力 103 5.3.5 PID參數 103 5.4 最佳拋光參數應用 108 5.4.1 實驗試件之設計及加工路徑規劃 108 5.4.2 實驗試件之量測結果 114 5.5拋光膠體 119 5.5.1 表面粗化 119 5.5.2 膠體磨耗 121 第六章 結論與未來展望 123 6.1 結論 123 6.2 未來展望 124 參考文獻 126 附錄(一) F分布表,F0.01,v1,v2 132 附錄(二) STAVAX不銹模具鋼材料及熱處理證明 134 附錄(三) NBR配方表 135 附錄(四) PID變化情形 136 附錄(五) 試件表面粗糙度量測結果 144

    1. 莊俊雄,“創新型內建荷重計擠光工具應用於工具鋼自動化表面精加工之研究”,國立台灣科技大學機械工程學系碩士論文,2007年。
    2. 黃仕儒,“新型內建荷重計球擠光工具整合於CNC車床對塑膠模具鋼表面精加工之研究”,國立台灣科技大學機械工程學系碩士論文,2016年。
    3. 陳茂全,“於CNC工具機進行自動球拋光之定力控制研究”,國立台灣科技大學機械工程學系碩士論文,2008年。
    4. 徐銘良,“於CNC工具機進行自動球拋光之定力控制研究”,國立台灣科技大學機械工程學系碩士論文,2015年。
    5. 丁肇力,“超音波球拋光製程作鏡面不鏽鋼之自動化表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2016年。
    6. 潘建男,“自製內含氧化鋁粉橡膠球作STAVAX不鏽模具鋼之自動化表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2018年。
    7. 洪詩函,“自製拋光球對STAVAX模具鋼應用於CNC車銑複合工具機表面精加工之研究”,國立台灣科技大學機械工程學系碩士論文,2018年。
    8. 江忠穎,“自製拋光球對STAVAX模具鋼應用於六軸機械手臂之表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2019年。
    9. 鍾宏明,“於CNC工具機進行自製拋光球之定力控制拋光加工研究”,國立台灣科技大學機械工程學系碩士論文,2019年。
    10. 楊雁宇,“於CNC工具機以自製拋光工具進行STAVAX模具用鋼之表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2020年。
    11. 陳柏毓,“以自製拋光膠體工具進行機器人輔助拋光之定力控制研究”,國立台灣科技大學機械工程學系碩士論文,2021年。
    12. Shibuya, Koji, and Shunsuke Issiki. 2014. "Evaluation of metallic mold surfaces polished by an industrial robot with stick whetstones." Review of. International Journal of Automation Technology 8 (2):253-63.
    13. Huapeng Du, Yuwen Sun, Deyang Feng, and Jinting Xu. 2015. "Automatic robotic polishing on titanium alloy parts with compliant force/position control." Review of. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229 (7):1180-92.
    14. 郭思賢,“機械手臂於拋光作業之力量與循跡控制探討”,國立台灣科技大學機械工程學系碩士論文,2015年。
    15. 林佳駿,“六軸機械手臂自由曲面拋光系統之研究”,國立中興大學機械工程學系碩士論文,2015年。
    16. Fengjie Tian, Chong Lv, Zhenguo Li, and Guangbao Liu. 2016. "Modeling and control of robotic automatic polishing for curved surfaces." Review of. CIRP Journal of Manufacturing Science and Technology 14:55-64.
    17. Abd El Khalick Mohammad, Jie Hong, and Danwei Wang. 2018. "Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach." Review of. Robotics and Computer-Integrated Manufacturing 49.
    18. Yunfei Dong, Tianyu Ren, Kui Hu, Dan Wu, and Ken Chen. 2020. "Contact force detection and control for robotic polishing based on joint torque sensors." Review of. The International Journal of Advanced Manufacturing Technology 107:2745-56.
    19. Chen Fan, Huan Zhao, Dingwei Li, Lin Chen, Chao Tan, and Ding Han. 2019. "Contact force control and vibration suppression in robotic polishing with a smart end effector." Review of. Robotics and Computer-Integrated Manufacturing 57:391-403.
    20. Lin, Hsien-I, and Vipul Dubey. 2019. Design of an adaptive force controlled robotic polishing system using adaptive fuzzy-PID. Paper presented at the Intelligent Autonomous Systems 15: Proceedings of the 15th International Conference IAS-15.
    21. Mohsin, Imran, Kai He, Zhao Wenliang, and Zheng Li. 2020. Robotic Polishing of the Thin Plate Eyeglasses frame Under Effective Path Planning and Stable Force. Paper presented at the 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR).
    22. Manuel Amersdorfer, Jens Kappey, and Thomas Meurer. 2020. "Real-time freeform surface and path tracking for force controlled robotic tooling applications." Review of. Robotics and Computer-Integrated Manufacturing 65:101955.
    23. Adhithya Plato Sidharth Arunachalam, Sridhar Idapalapati, Sathyan Subbiah, and Yee Wei Lim. 2020. "A novel retractable stiffener-based disk-shaped active compliant polishing tool." Review of. Journal of Manufacturing Processes 51:83-94.
    24. Jing-Jing Zhang, Jia Liu, Sheng-Qiang Yang, Zhi-Jie Qiao, and Jing-zheng Li. 2021. "Simultaion and Experimental Analysis of Polishing Contact Force of Industrial Robots." Paper presented at the 2021 33rd Chinese Control and Decision Conference(CCDC).
    25. Ri Pan, Wanying Zhao, Zhenzhong Wang, Ji Shuting, Xiangsheng Gao, Dongju Chen, and Jinwei Fan. 2021. "Research on an evaluation model for the working stiffness of a robot-assisted bonnet polishing system." Review of. Journal of Manufacturing Processes 65:134-43.
    26. Yasuhiro Kakinuma, Shotaro Ogawa, and Katsuki Koto. 2022. "Robot polishing control with an active end effector based on macro-micro mechanism and the extended Preston's law." Review of. CIRP Annals 71 (1):341-4.
    27. Yuzhang Wei, and Qingsong Xu. 2022. "Design of a new passive end-effector based on constant-force mechanism for robotic polishing." Review of. Robotics and Computer-Integrated Manufacturing 74:102278.
    28. 陳建樺,“塑膠模壓鑄用鋼之球擠光加工研究”,國立台灣科技大學機械工程學系碩士論文,2001年。
    29. 邱如德,“以球擠光與拋光製程對自由曲面模具之表面精加工之研究”,國立台灣科技大學機械工程學系碩士論文,2002年。
    30. C.H. Chen, and F-J Shiou. 2003. "Determination of optimal ball-burnishing parameters for plastic injection moulding steel." Review of. The International Journal of Advanced Manufacturing Technology 21:177-85.
    31. 李伯益,“撓性夾持機構應用在研磨與拋光之研究”,淡江大學機械工程學系碩士論文,1998 年。
    32. 李冠宗,“潤滑學”,高立書局,1992年。
    33. 張郭益、許全守,“精密量測”,全華書局,2003年。
    34. 范光照,“精密量測”,高立書局,2000年。
    35. Kao Y. Tsai, I-Ping Hsu, and Dilip Kohli. 1994. "Admissible motions of special manipulators." Review of. IEEE transactions on robotics and automation 10 (3):386-91.
    36. “FANUC Robot M-10iA 機構部操作說明書 Edition 04”,FANUC CORPORATION,2008年。
    37. 喬執中,“力量控制於機械手臂運動之應用”,國立中央大學機械工程學系碩士論文,2001年。
    38. 毛偉龍,“單元十七:直流馬達PID控制實驗(二)_PART 5:PID控制原理(一)”,DeltaMOOCx自動化系統設計與實務線上課程,2017年。
    39. “PID控制器”,維基百科。
    40. 陳耀茂譯,“田口實驗計畫法”,滄海書局,1997年。
    41. 李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司,2000年。
    42. 黎正中譯,“穩健設計之品質工程”,台北圖書有限公司,1993年。
    43. “粗糙度量測之新趨勢”,機械月刊第27卷第11期,2001年。
    44. 劉克琪,“田口品質工程技術理論與實務”,中華民國品質管制學會,1993 年。
    45. 林秀雄 ,“田口方法與品質工程”,新知企業有限公司,1997年。
    46. 呂璞石、黃振賢,“金屬材料”,文京圖書有限公司,1989 年。
    47. “鋁合金機械性質表”,東野精機股份有限公司,2016年。
    48. “ASSAB瑞典優質鋼材”,臺灣盛百股份有限公司,2003年。
    49. “MV 154中心加工機規格表”,百德機械股份有限公司。
    50. “UX 300中心加工機規格表”,百德機械股份有限公司。
    51. Phillip.J.Ross. 2008. “Taguchi Techniques for Quality Engineering second edition.” Mcgraw-Hill international editions.

    無法下載圖示 全文公開日期 2025/07/13 (校內網路)
    全文公開日期 2025/07/13 (校外網路)
    全文公開日期 2025/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE