簡易檢索 / 詳目顯示

研究生: 孫健桓
Jian-Huan Sun
論文名稱: 氧化鋅/氧化銅奈米結構異質界面光電感測及光伏特性探討
Photosensing and photovoltaic properties of ZnO/CuO nanowire heterostructure
指導教授: 趙良君
Liang -Chiun Chao 
口試委員: 黃柏仁
Bohr-Ran Huang 
何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 氧化鋅氧化銅奈米線異質結構光伏特性
外文關鍵詞: photosensing
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗首先利用熱氧化法400˚C製備出氧化銅奈米線,接著以熱蒸鍍法將氧化鋅沉積到氧化銅奈米線上,形成異質結構,經過不同的退火時間,探討其光伏特性的應用。在FESEM的結果顯示出,氧化鋅將氧化銅奈米線包覆的非常均勻且完整,且隨著退火時間的增加,表面形貌並沒有顯著的變化,從XRD的結果顯示出,尚未退火仍有鋅繞射峰值存在,隨著退火時間的增加,氧化鋅的結晶性越好。從I-V特性曲線量測結果得知,經過退火後的ZnO/CuO奈米線,都有好的整流特性,且能量轉換效率隨著退火時間的增加而得到改善。在光響應表現方面,退火10分鐘的300 nm光響應為4.11×10-2 (A/W)最高,當退火時間增加至30分鐘,缺陷變多造成其光響應為2.15×10-3 (A/W)最差,另一方面,在300 nm紫外光照射下,其光電流變化在未退火的條件下,其光電流的上升及下降時間都是最長的,且電流在衰退的時候,並不會回到原本的暗電流值,其原因為尚未退火時,內部缺陷過多,導致上升及下降時間變慢,缺陷去捕捉光產生的電子,使得電流無法回到原本的暗電流值經過退火10分鐘後,材料結晶性變好、缺陷變少,使得有較快的上升及下降時間。


    CuO nanowires has been successfully prepared by thermal oxidation of copper films at 400˚C. ZnO is deposited on CuO nanowires to format ZnO/CuO heterostructure by thermal evaporation. FESEM results show that ZnO covers CuO nanowires uniformly and its morphology remains unchaned after annealing. As-deposited sample shows Zn diffraction peaks, indicates the presence of Zn. Annealing results in oxidation of residual Zn. I-V measurement shows that ZnO/CuO nanowires exhibit good rectifying behavior after annealing and its power conversion efficiency improves as well. Photoresponse measurement shows that 10 minutes annealed sample shows a maximum responsivity of 4.11×10-2 (A/W) at 300nm. Increasing annealing time results in reduced responsivity to 2.15×10-3 (A/W) due to the increase of oxygen vacancy defects. The rise time and decay time of photoresponse was found to be dependent on annealing condition as well, which is due to the competition of recrystalization and decomposition of ZnO.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1-1 前言 1-2 研究動機 第二章 文獻回顧與理論基礎 2-1 銅及其氧化物之晶體結構與特性 2-1-1 銅(Cu,Copper) 2-1-2氧化亞銅(Cu2O ,Cuprous Oxide) 2-1-3氧化銅(CuO ,Cupric Oxide) 2-2 氧化鋅之晶體結構與特性 2-3 一維氧化銅奈米線之製備 2-3-1 利用鹽類製備一維氧化銅奈米結構 2-3-2利用銅金屬製備一維氧化銅奈米結構 2-4形成氧化銅/氧化鋅之異質結構 第三章 實驗理論基礎 3-1 離子束濺鍍 3-1-1 濺鍍原理 3-1-2 離子束濺鍍原理 3-2薄膜沉積原理 3-3熱電阻式蒸鍍 3-3-1蒸鍍原理 3-3-2熱電阻式蒸鍍原理 3-4 p-n接面二極體 3-4-1 p-n 接面原理 3-4-2 p-n 接面電流電壓特性 3-4-3 p-n 接面整流特性 3-4-4 p-n 接面光伏特性 3-5 太陽能電池 3-5-1 太陽能電池原理 3-5-2 太陽能電池重要參數 3-6 半導體光測器 3-6-1 光偵測器簡介 3-6-2 光偵測器工作原理 3-6-3 光偵測器之特性參數 第四章 實驗步驟與量測方法 4-1 實驗設備及流程 4-1-1 氧化銅奈米線之製備 4-1-2 氧化鋅/氧化銅奈米線異質結構之製備 4-1-3 ITO透明導電膜之製備 4-2 特性分析儀器 4-2-1 場發射掃描電子顯微鏡(Field emission scanning electron microscope, FESEM) 4-2-2 X-ray繞射儀(X-ray diffraction, XRD) 4-2-3 電流-電壓(I-V)量測 (Current – Voltage measurement) 4-2-4 電容-電壓(C-V)量測 (Capacitance – Voltage measurement) 4-2-5 光電流量測(Photocurrent) 第五章 實驗結果與討論 5-1 場發射掃描式電子顯微鏡分析 (FE-SEM) 5-2 X-ray繞射儀分析 (XRD) 5-3 I-V特性曲線量測分析 5-4 C-V特性曲線量測分析 5-5光電流量測分析 (photocurrent) 第六章 結論與未來展望 參考文獻

    參考文獻 參考文獻
    [1] M. Mandal, S. K. Ghosh, S. Kundu, K. Esumi, and T. Pal, “UV photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles,” Langmuir 18, pp. 7792-7797, 2002.
    [2] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84, pp. 3654-3656, 2004.
    [3] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
    [4] A. Zainelabdin, G. Amin, S. Zaman, O. Nur, J. Lu,b L. Hultmanb and M. Willander, “CuO/ZnO nanocorals synthesis via hydrothermal technique: growth
    mechanism and their application as humidity sensor,” J. Mater. Chem., pp. 11583-11590, 2012.
    [5] W. K. Hong, B. J. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E. A. Stach, and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloids. Surf. A, vol. 313-314, pp. 378-382, 2008.
    [6] X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, “Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery,” J. Phys. Chem. B vol. 108, pp. 5547-5551, 2004.
    [7] Y. K. Su, C. M. Shen, H. T. Yang, H. L. Li, and H. J. Gao, “Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route,” Trans. Nonferrous Met. Soc. China vol. 17, pp. 783-786, 2007.
    [8] C. K. Xu, Y. K. Liu, G. D. Xu, and G. H. Wang, “Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor,” Mater. Res. Bull. vol. 37, pp. 2365-2372, 2002.
    [9] X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air,” Nano Lett. 2, pp. 1333-1338, 2002.
    [10] H. Wan, B. B. Li, and H. E. Ruda, “Influence of growth conditions on morpholopgy of ZnO nanostructure in CVD process,” IEEE International Conf., NEMS, pp. 1110-1115, 2010.
    [11] H. Yan, J. Hou, Z. Fu, B. Yang, P. Yang, K. Liu, M. Wen, Y. Chen, S. Fu, andF. Li, “Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation,” Mater. Res. Bull., vol. 44, pp. 1954-1958, 2009.
    [12] H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A, vol. 393, pp. 80-82, 2005.
    [13] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” App. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
    [14] T. L. Chou, W. Y. Wu, and J. M. Ting, “Sputter deposited ZnO nanowires/thin film structures on glass substrate,” Thin Solid Films, vol. 518, pp. 1553-1556, 2009.
    [15] P. Poizot, C. J. Hung, M. P. Nikiforov, E. W. Bohannan, and J. A. Switzer, “An electrochemical method for CuO thin film deposition from aqueous solution,” Electrochem. Solid-State Lett. vol. 6, pp.21-25, 2003.
    [16] T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Singe-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci. vol. 33, pp. 3555-3566, 1998.
    [17] T. Mahalingam, J. S. P. Chitra, J. P. Chu, H. Moon, H. J. Kwon, and Y. D. Kim, “Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films,” J. Mater. Sci. Mater. Electron. vol. 17, pp. 519-523, 2006.
    [18] A. O. Musa, T. Akomolafe, and M. J. Carter, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells vol. 51, pp. 305-316, 1998.
    [19] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells,” Sol. Energy. vol. 80, pp. 715-722, 2006.
    [20] A. E. Rakhshani, “Preparation characteristics and photovoltaic properties of cuprous oxide - a review,” Solid-State Electron.vol. 29, pp. 7-17, 1986.
    [21] M. Kaura, K. P. Muthea, S. K. Despandeb, S. Choudhuryc, and J. B. Singh, “Growth and branching of CuO nanowires by thermal oxidation of copper,” J. Cryst. Growth vol. 289 , pp. 670-675, 2006.
    [22] S. Anadan and S. H. Yang, “Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies – an overview,” J. Exp. Nanosci. vol. 2, pp. 23-56, 2007.
    [23] M. A. Dar, Y. S. Kim, W. B. Kim, J. M. Sohn, and H. S. Shin, “Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method,” Appl.Surf. Sci. vol. 254, pp. 7477-7481, 2008.
    [24] W. X. Zhang, S. X. Ding, Z. H. Yang, A. P. Liu, Y. T. Qian, S. P. Tang, and S. H. Yang, “Growth of novel nanostructured copper oxide (CuO) films on copper foil,” J. Cryst. Growth. vol. 291, pp. 479-484, 2006.
    [25] F. Yakuphanoglu, Y. Caglar, S. Ilican, and M. Caglar, “The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films,” Physica B, vol. 394, pp. 86-92, 2007.
    [26] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and device,” J. Appl. Phys., vol. 98, pp. 041301-1 - 041301-103, 2005.
    [27] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., vol. 85, pp. 1012-1015, 2000.
    [28] X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, “Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery,” J. Phys. Chem. B vol. 108, pp. 5547-5551, 2004.
    [29] Y. K. Su, C. M. Shen, H. T. Yang, H. L. Li, and H. J. Gao, “Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route,” Trans. Nonferrous Met. Soc. China vol. 17, pp. 783-786, 2007.
    [30] C. H. Lo, T. T. Tsung, L. C. Chen, C. H. Su, and H. M. Lin, “Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system
    (SANSS),” J. Nanopart. Res.vol. 7, pp. 313-320, 2005.
    [31] X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air,” Nano Lett. 2, pp. 1333-1338, 2002.
    [32] C. H. Xu , C. H. Woo, and S. Q. Shi, “Formation of CuO nanowires on Cu foil,” Chem. Phys. Lett. vol. 399, pp. 62-66, 2004.
    [33] Zhao, X.; Wang, P.; Li, B, “CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application,” Chem. Commun. vol. 46, pp. 6768-6770, 2010.
    [34] Z Guo, X Chen, J Li, J. H Liu, and X. J Huang, “ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties,” Langmuir, pp. 6193-6200, 2011.
    [35] S. Jung, S. Jeon and K. Yong, “Fabrication and characterization of flower-like CuO-ZnO heterostructure nanowire arrays by photochemical deposition,’’Nanotechnology, pp. 015606, 2006.
    [36] A. Kargar, Y. Jing, S. J. Kim, C. T. Riley, X. Q. Pan, and D. Wang, “ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation,’’Acs. Nano. , pp. 11112-11120, 2013.
    [37] L. S. Vikas, K. C. Sanal1, M. K. Jayaraj, A. Antony, and J. Puigdollers, “Vertically aligned ZnO nanorod array/CuO heterojunction for UV detector application,” Phys. Status Solidi A. vol. 211, No. 11, pp. 2493-2498, 2014.
    [38] S. Pukird, W. Song, S. Noothongkaew, S. K. Kim, B. K. Min, S. J. Kim, K. W. Kim, S. Myung, K. S. An, “Synthesis and electrical characterization of vertically-aligned ZnO-CuO hybrid nanowire p-n junctions,” Appl. Surf. Sci. vol. 351, pp. 546-549, 2015.
    [39] W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. R. Soc., vol. 142, pp. 87-101, 1852.
    [40] R. Messier, S. Trolier-McKinstry, “Thin film piezoelectrics for MEMS,” J. Vac. Sci. Technol., A, pp. 9306-9313, 2001.
    [41] J. Pankove Optical Processes in Semiconductors, New York, Dover, 1976.
    [42] S. M. Sze, Semiconductor Device Physics and Technology, pp. 278, 1985.
    [43] M.Sze, D. J. Coleman, JR. and A. Loya., “Current transport in metal-semiconductor-metal (MSM) structures”, Solid-State Electron., vol. 14, pp. 1209 , 1971.
    [44] S. M. Sze, “Semiconductor devices: Physics and technology” John Wiley &Sons, New York, 1985.
    [45] E. Monroy, F. Omnés, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors”, Semicond. Sci. Technol., vol. 18, 2003 .
    [46] C. Y. Liu, B. P. Zhang, Z. W. Lu, N. T. Binh, K. Wakatsuki, Y. Segawa, and R. Mu, “Fabrication and characterization of ZnO film based UV photodetector,” J. Mater. Sci. - Mater. Electron., vol. 20, pp. 197-201, 2009.

    無法下載圖示 全文公開日期 2021/06/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE