簡易檢索 / 詳目顯示

研究生: 王志豪
Zhi-Hao Wang
論文名稱: 液壓鑄造Al0.3In0.7Sb三元系統暨InSb-In異質結構奈米線成長與微結構分析研究
Al0.3In0.7Sb Ternary and InSb-In Heterostructure Nanowires Growth and Microstructure Analysis via Hydraulic Pressure Injection Method
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 周賢鎧
Shyan-Kay Jou
葉炳宏
Ping-Hung Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 102
中文關鍵詞: 奈米線異質結構陽極氧化鋁銻化銦
外文關鍵詞: Nanowire, Heterostructure, AAO, InSb
相關次數: 點閱:304下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討Al0.3In0.7Sb三元系統與InSb-In異質結構奈米線兩部份。首先,兩種奈米線的合成方法皆是通過使用真空液壓鑄造的方式來製備,鑄造用的前驅材料Al0.3In0.7Sb及InSb-In塊材為自行熔煉所獲得。第一部份,由於在Al0.3In0.7Sb此比例下的熔點882°C高於目前自家實驗室設備的極限810°C,因此只將其加熱至810°C並隨即壓入陽極氧化鋁模板中。藉由掃描式電子顯微鏡及能量色散X射線光譜儀來確認其Al0.3In0.7Sb奈米線的表面形態、長度、直徑及成分比例。奈米線的直徑為100 nm與陽極氧化鋁孔徑相同,長度大約落在10-30 µm之間。經由穿透式電子顯微鏡觀察可得知Al0.3In0.7Sb奈米線具有一定的均勻性且透過晶格面間距的對照能夠印證鋁成功的部份取代了銦,亦透過拉曼光譜證明其壓縮應力的存在。
    第二部分,由於InSb-In奈米線的熔點較低大約為480 °C,因此在製成過程時能順利將溫度加熱至熔點以上。利用金相實驗分析其InSb-In塊材相分離的特性與兩相的分布情形。通過掃描式電子顯微鏡影像對大量InSb-In異質結構奈米線進行統計分析,可得知平均長度比值InSb/In為1.9 ± 0.7712,而在長度分布的部分,InSb : In為178 ± 91.22 nm : 93 ± 43.77 nm,使用穿透式電子顯微鏡觀察其微結構,發現其退火與未退火的相分離有著完全不同的情況。並進一步分析其異質結構而觀察到在界面處的晶格失配為35.96 %,其磊晶關係為[1 ̅10]InSb // [111]In , (111)InSb // (1 ̅01)In。藉由掃描穿透式電子顯微鏡發現InSb區段的In與Sb之莫耳比為11 : 9,且在界面中存在著10奈米左右的銦銻合金過渡相,此過渡相有著與銦的體心四方結構極為相似的結構,但存在著許多缺陷。此外,藉由X-射線繞射分析較為大量的奈米線之晶體結構,足以證明其製程的穩定性與均勻性也能得到奈米線較為優選的結晶取向,並且從拉曼光譜分析中能夠發現塊材與奈米線之光學聲子振動的強度有很大的差異,這是由於奈米線有著非常強烈的優選成長方向且為單晶的結構這兩因素所導致。


    In this thesis, the Al0.3In0.7Sb ternary system and InSb-In heterostructure nanowires have been successfully synthesized via vacuum hydraulic pressure injection process. In Al0.3In0.7Sb part, due to Al0.3In0.7Sb has melting point of 882 °C which is higher than the limit of our equipment 810 °C, the operating temperature was set at 810 °C then press into the AAO template. By SEM analysis, The Al0.3In0.7Sb has 100 nm diameter which corresponds to the pore size of AAO and 10-30 µm length. The composition of Al0.3In0.7Sb bulk and NWs was characterized by EDS. The results of the SAED and Raman analysis show the presence of lattice strain which is a proof of the presence of Al atoms in the InSb lattice. In addition, the STEM mapping demonstrates the homogeneous distribution of aluminum in the nanowires.
    On the other hand, since the melting point of the InSb-In nanowires is about 480 °C, the temperature can be easily heated up above the melting point during the process. Metallographic test was used to analyze the phase separation characteristics of InSb-In bulk and the distribution of the two phases. By SEM image, the average length ratio of InSb/In is approximately 1.9 ± 0.7712. The distribution of length of InSb is about 178 ± 91.22 nm and the In is around 93 ± 43.77 nm. According to the TEM analysis, the quality of InSb-In heterostructure nanowires were improved by annealing treatment. The epitaxial relationship of heterojunction of InSb-In is [1 ̅10]InSb // [111]In , (111)InSb // (1 ̅01)In and lattice mismatch was calculated as 35.96%. Therefore, a number of misfit dislocations were formed at the interface. Moreover, the linescan of STEM demonstrate that the InSb segment has an 11:9 molar ratio and an about 10 nm metastable phase In1-xSbx with In structure was found at the interface. In addition, the crystal structure information of a large number of nanowires by X-ray diffraction sufficiently proves that the stability and uniformity of the process and it can also obtain the preferred crystal orientation of the InSb-In nanowires. In Raman spectroscopy analysis, it can be seen that the relative intensity of the optical phonon vibration between bulk and nanowires is very different. This is due to the nanowires have a very strong preferred growth direction and they are single crystal structures.

    摘要 II Abstract VI Contents VIII List of Abbreviations and Acronyms V List of Figures VI Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.1.1 One-Dimensional Nanostructure 2 1.2 Group of III-V Compound Semiconductors 3 1.2.1 Indium Antimonide (InSb) 4 1.2.2 Aluminum Antimonide (AlSb) 7 1.3 Growth Method of Nanowires 9 1.3.1 Chemical Vapor Deposition (CVD) 9 1.3.2 Electrodeposition with AAO Template Assisted 10 1.4 Heterostructure 12 1.5 Annealing of InSb Compound 13 1.6 Indium 13 1.7 Metallography 16 1.8 Research Motivation 17 Chapter 2 Experiment Procedures 18 2.1 Experiment Procedures of Al0.3In0.7Sb Ternary and InSb-In Heterostructure Nanowires 18 2.2 The Synthesized Method of Al0.3In0.7Sb Ternary and InSb-In Heterostructure Nanowires 20 2.2.1 Al0.3In0.7Sb Bulk Preparation 20 2.2.2 InSb-In Bulk Preparation 20 2.2.3 Al0.3In0.7Sb and InSb-In NWs Synthesis 21 2.3 The Morphologies and Microstructure Characterization of Al0.3In0.7Sb Ternary and InSb-In Heterostructure Nanowires. 23 2.3.1 Scanning Electron Microscope (SEM) 23 2.3.2 Transmission Electron Microscope (TEM) 23 2.3.3 Energy Dispersive Spectrometer (EDS) 24 2.3.4 X-Ray Diffraction (XRD) 25 2.3.5 Raman Spectrum Analysis 26 Chapter 3 Results and Discussions 28 3.1 Al0.3In0.7Sb Nanowires 28 3.1.1 SEM Analysis of Al0.3In0.7Sb Bulk and NWs 30 3.1.2 XRD Analysis of Al0.3In0.7Sb Bulk and NWs 32 3.1.3 Raman Analysis of Al0.3In0.7Sb Bulk and NWs 34 3.1.4 TEM Analysis of Al0.3In0.7Sb NWs 36 3.1.4.1 Polycrystalline Structure 37 3.1.4.2 Single Crystal Structure 39 3.1.4.3 Element Mapping Analysis of STEM 41 3.2 InSb-In Heterostructure Nanowires 43 3.2.1 SEM Analysis of InSb-In Bulk and NWs 43 3.2.2 Metallographic Analysis of InSb-In Bulk 48 3.2.3 XRD Analysis of InSb-In Bulk and NWs 50 3.2.4 Raman Analysis of InSb-In Bulk and NWs 52 3.2.5 TEM Analysis of InSb-In NWs 54 3.2.5.1 Annealing Effect of InSb-In NWs 54 3.2.5.2 Centered Dark Field 60 3.2.5.3 Epitaxial Analysis by HRTEM 62 3.2.5.4 Linescan Analysis of STEM 66 Chapter 4 Summary and Conclusions 68 Chapter 5 Future Works 69 Reference 70 Appendix 83

    [1] Bharat Bhushan, “Governance, policy, and legislation of nanotechnology: a perspective”, Microsystem Technologies, 2015, 21, 1137-1155.
    [2] Gabriel A. Silva, M.Sc., Ph.D, “Introduction to nanotechnology and it’s applications to medicine”, Surgical Neurology, 2004, 61, 216-220.
    [3] Geroge M. whitesides, “Nanoscience, nanotechnology, and chemistry”, Small, 2004, 1, 172-179.
    [4] Phaedon Avouris, Zhihong Chen and Vasili Perebeinos, “Carbon-based electronics”, Nature Nanotechnology, 2007, 2, 605-615.
    [5] Huang, Y., Duan, X., Wei, Q., & Lieber, C. M., “Directed assembly of one-dimensional nanostructures into functional networks”, Science, 2001, 291, 630-633.
    [6] Pai-Chun Chang and Chung-Jen Chien, “Finite size effect in ZnO nanowires”, Applied Physics Letters, 2007, 90, 113101.
    [7] Stephen M. Bergin, Yu-Hui Chen, Aaron R. Rathmell, Patrick Charbonneau, Zhi-Yuan Li and Benjamin J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films”, Nanoscale, 2012, 4, 1996-2004.
    [8] Ryza N. Musin and Xiao-Qian Wang, “Quantum size effect in core-shell structured silicon-germanium nanowires”, Physical Review B, 2006, 74, 165308.
    [9] Li Shi, Deyu Li, Choongho Yu, Wanyoung Jang, Dohyung Kim, Zhen Yao, Philip Kim, Arunava Majumdar, “Measureing thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated devices”, Journal of Heat Transfer, 2003, 125, 881-888.
    [10] Volz, Sebastian G., and Gang Chen, “Molecular dynamics simulation of thermal conductivity of silicon nanowires”, Applied Physics Letters, 1999, 75, 2056-2058.
    [11] A. Khitun, A. Balandin, K. L. Wang, “Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons”, Superlattices and Microstructures, 1999, 26, 181-193.
    [12] Tianyou Zhai, Xiaosheng Fang, Meiyong Liao, Xijin Xu, Haibo Zeng, Bando Yoshio, and Dmitri Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors”, Sensors, 2009, 9,6504-6529.
    [13] By Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, “One-dimensional nanostructures: synthesis, characterization, and applications”, Advanced Materials, 2003, 15, 353-389.
    [14] Rajat Kanti Paul, Sushmee Badhulika, and Ashok Mulchandani, “Room Temperature detection of NO2 using InSb nanowire”, Applied Physics Letters, 2011, 99, 033103.
    [15] Peter Offermans, Mercedes Crego-Calama and Sywert H. Brongersma, “Gas detection with vertical InAs nanowire arrays”, Nano letters, 2010, 10, 2412-2415.
    [16] C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, “Nanowire-based one-dimensional electronics”, Materials today, 2006, 9, 28-35.
    [17] Juan Du, Dong Liang, Hao Tang and Xuan P.A. Gao, “InAs Nanowire Transistors as Gas Sensor and the Response Mechanism”, Nano letters, 2009, 9, 4348-4351.
    [18] Charles M. Lieber and Zhong Lin Wang, “Functional Nanowires”, MRS Bulletin, 2007, 32, 99-108.
    [19] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys”, Journal of Applied Physics, 2001, 89, 5815-5875.
    [20] Xueru Zhang, Yufeng Hao, Guowen Meng, and Lide Zhang, “Fabrication of highly ordered InSb nanowire arrays by electrodeposition in porous anodic alumina membranes”, Journal of The Electrochemical Society, 2005, 152, 664-668.
    [21] C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Gosele, L. Samuelson, “Nanowire-based one-dimensional electroncis”, Mater. Today, 2006, 9, 28-35.
    [22] Ke Yang, Bing Li, Jingquan Zhang, Wei Li, Lili Wu, Guanggen Zeng, Wenwu Wang, Cai Liu, Lianghuan Feng, “Structural, optical and electrical properties of AlSb thin films deposited by pulsed laser deposition using aluminum-antimony alloying target”, Superlattices and Microstructures, 2017, 102, 1-7.
    [23] S. Das, B. Ghosh, S. Hussain, R. Bhar, A.K. Pal, “Pulsed laser deposition: A viable route for the growth of aluminum antimonide film”, Journal of Crystal Growth, 2015, 419, 12-19.
    [24] Ming Fang, Xiaoli Tan, Mao Liu, Xinxin Gong, Lide Zhang, Guangtao Fei, “High density near amorphous InSb nanowire arrays and its photo-electric performance”, Journal of Alloys and compounds, 2015, 626, 35-41.
    [25] Xunyu Yang, Gongming Wang, Peter Slattery, Jin Z. Zhang, Yat Li, “Ultrasmall single-crystal indium antimonide nanowires”, Crystal Growth and Design, 2010, 10, 2479-2482.
    [26] U Philipose, Gopal Sapkota, J Salfi, Harry E Ruda, “Influence of growth temperature on the stoichiometry of InSb nanowires grown by vapor phase transport”, Semiconductor Science and Technology, 2010, 25, 075004.
    [27] Henrik A. Nilsson, Philippe Caroff, Claes Thelander, Marcus Larsson, Jakob B. Wagner, Lars-Erik Wernersson, Lars Samuelson and H. Q. Xu, “Giant, Level-Dependent g Factors in InSb Nanowire Quantum Dots”, Nano letters, 2009, 9, 3151-3156.
    [28] I. van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, and M. Wimmer, “Spin-orbit interaction in InSb nanowires”, Phys. Rev. B, 2015, 91, 201413.
    [29] Hung-der Su, Shou-Zen Chang, Si-Chen Lee and Tai-Ping Sun, “High temperature InAs infrared detector based on metal-insulator-semiconductor structure”, Electronics Letters, 1995, 31, 918-920.
    [30] N. Mingo, “Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires”, Applied Physics Letters, 2004, 84, 2652-2654.
    [31] J. W. G. van den Berg, S. Nadj-Perge, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven, “Fast spin-orbit qubit in an indium antimonide nanowire”, Phy. Rev. Lett, 2013, 110, 066806.
    [32] T. Ashley, A. B. Dean, C. T. Elliott, G. J. Pryce, A. D. Johnson, and H. Willis, “Uncooled high-speed InSb field-effect transistors”, Applied Physics Letters, 1995, 66, 481-483.
    [33] S. A. Solin, Tineke Thio, D. R. Hines, J. J. Heremans, “Enhanced Room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors”, Science, 2000, 289, 1530-1532.
    [34] S. A. Solin, D. R. Hines, A. C. H. Rowe, J. S. Tsai, Yu. A. Pashkin, S. J. Chung, N. Goel, and M. B. Santos, “Nonmagnetic semiconductors as read-head sensors for ultra-high-density magnetic recording”, Applied Physics Letters, 2002, 80, 4012-4014.
    [35] S. V. Zaitsev-Zotov, Yu. A. Kumzerov, Yu. A. Firsov, P. Monceau, “Unconventional magnetoresistance in long InSb nanowires”, Journal of Experimental and Theoretical Physics Letters, 2003, 77, 135-139.
    [36] M. Singh, J. S. Arora, Y. K. Vijay, M. Sudharshan, “Optical, electrical and thermoelectric power studies of Al-Sb thin film bilayer structure”, Bulletin of Materials Science, 2006, 29, 17-20.
    [37] A. Herczog, R. R. Haberecht and A. E. Middleton, “Preparation and properties of aluminum antimonide”, Journal of The Electrochemical Society, 1958, 105, 533-540.
    [38] Taminder Singh, R.K. Bedi, “Growth and properties of aluminium antimonide films produced by hot wall epitaxy on single-crystal KCl”, Thin Solid Films, 1998, 312, 111-115.
    [39] P S Nikam, R Y Borse, R R Pawar, “Composition dependence of electrical properties of Al-Sb thin films”, Bulletin of Materials Science, 1997, 20, 1015-1021.
    [40] Y. R. Toda, D. N. Gujarathi, “Electrical properties of aluminium antimonide thin films deposited by vacuum evaporation technique”, Optoelectronics and Advanced Materials – Rapid Communications, 2011, 5, 895-899.
    [41] K. Ishida, T. Shumiya, H. Ohtani, M. Hasebe, and T. Nishizawa, “Phase diagram of the Al-In-Sb system”, Journal of The Less Common Metals, 1988, 143, 279-289.
    [42] Kan Li, Wei Pan, Jingyun Wang, Huayong Pan, Shaoyun Huang, Yingjie Xing, H. Q. Xu, “Growth of high material quality group III-antimonide semiconductor nanowires by a naturally cooling process”, Nanoscale Research Letters, 2016, 11, 222.
    [43] Rajat Kanti Paul, Miroslav Penchev, Jiebin Zhong, Mihrimah Ozkan, Maziar Ghazinejad, Xiaoye Jing, Emre Yengel, Cengiz S. Ozkan, “Chemical vapor deposition and electrical characterization of sub-10 nm diameter InSb nanowires and field-effect transistors”, Materials Chemistry and Physics, 2010, 121, 397-401.
    [44] Diana Car, Sonia Conesa-Boj, Hao Zhang, Roy L. M. Op het Veld, Michiel W. A. de Moor, Elham M. T. Fadaly, Önder Gül, Sebastian Kölling, Sebastien R. Plissard, Vigdis Toresen, Michael T. Wimmer, Kenji Watanabe, Takashi Taniguchi, Leo P. Kouwenhoven and Erik P. A. M. Bakkers, “InSb nanowires with built-in GaxIn1−xSb tunnel barriers for Majorana devices”, Nano Letters, 2017, 17, 721-727.
    [45] Claes Thelander, Philippe Caroff, Sébastien Plissard, and Kimberly A. Dick, “Electrical properties of InAs1-xSbx and InSb nanowires grown by molecular beam epitaxy”, Applied Physics Letters, 2012, 100, 232105.
    [46] Cheng-Hsiang Kuo, Jyh-Ming Wu, Su-Jien Lin, Wen-Chih Chang, “High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire”, Nanoscale Research Letters, 2013, 8, 327.
    [47] Y.W. Yang, L. Li, X.H. Huang, M. Ye, Y.C. Wu, G.H. Li, “Transport properties of InSb nanowire arrays”, Applied Physics A, 2006, 84, 7-9.
    [48] A. Saedi, M. Ghorbani, “Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template”, Materials Chemistry and Physics, 2005, 91, 417-423.
    [49] Masuda H, Fukuda K, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina”, Science, 1995, 268, 1466-1468.
    [50] O’Sullivan J. P., Wood G. C., “The morphology and mechanism of formation of porous anodic films on aluminum”, Proc. Royal Soc. London A, 1970, 317, 511-543.
    [51] Diggle J. W., Downie T. C., Goulding C. W., “Anodic oxide films on aluminum”, Chemical Reviews, 1969, 69, 365-405.
    [52] Hunter M. S., Fowel P., “Determination of barrier layer thickness of anodic oxide coatings”, Journal of The Electrochemical Society, 1954, 101, 481-485.
    [53] Hunter M. S., Fowel P., “Factors affecting the formation of anodic oxide coatings”, Journal of The Electrochemical Society, 1954, 101, 514-519.
    [54] Akahori H., “Electron microscopic study of growing mechanism of aluminum anodic oxide film”, Journal of Electron Microscopy, 1961, 10, 175-185.
    [55] J. Tersof, “Theory of semiconductor heterojunctions: The role of quantum dipoles”, Physical Review B, 1984, 30, 4874-4877.
    [56] H. C. Card, “Electrostatic effects of interface states on carrier transport in semiconductor heterojunctions”, Journal of Applied Physics, 1979, 50, 2822-2825.
    [57] A. D. Katnani and G. Margaritondo, “Microscopic study of semiconductor heterojunctions: Photoemission measurement of the valance-band discontinuity and of the potential barriers”, Physical Review B, 1983, 28, 1944-1956.
    [58] Amit Malik, Chandan Sharma, Robert Laishram, Rajesh Kumar Bag, Dipendra Singh Rawal, Seema Vinayak, Rajesh Kumar Sharma, “Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT”, Solid State Physics, 2018, 142, 8-13.
    [59] Margaritondo, G, “Interface states at semiconductor junctions”, Reports on Progress in Physics,1999, 62, 765.
    [60] Edward, T. Yu, James O. McCaldin, and Thomas C. McGill, “Band offsets in semiconductor heterojunctions”, Solid State Physics, 1992, 46, 1-146.
    [61] D.Mukherji and B.R. Nag, “Electron tunnelling in semiconductor heterostructures”, Solid-State Electronics, 1978, 21, 555-559.
    [62] Warren E. Pickett, Steven G. Louie, and Marvin L. Cohen, “Ge-GaAs (110) interface: A self-consistent calculation of interface states and electronic structure”, Phys. Rev. Lett, 1977, 39, 109-112.
    [63] M. Lazar, C. Raynaud, D. Planson, and J.-P. Chante, “Effect of ion implantation parameters on Al dopant redistribution in SiC after annealing: defect recovery and electrical properties of p-type layers”, Journal of Applied Physics, 2003, 94, 2992-2998.
    [64] J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates”, Applied Physics Letters, 1987, 50, 31-33.
    [65] Masafumi Yamaguchi, Masami Tachikawa, Yoshio Itoh, Mitsuru Sugo, and Susumu Kondo, “Thermal annealing effects of defect reduction in GaAs on Si substrates”, Journal of Applied Physics, 1990, 68, 4518-4522.
    [66] Qiujun Zhang, Yuanhuan Cao, Kan Li, Huayong Pan, Shaoyun Huang, Yingjie Xing, H.Q. Xu, “Synthesis of Mn-doped indium antimonide nanowires by multi-step depositions and annealing”, Journal of Physics and Chemistry of Solids, 2017, 110, 43-48.
    [67] S.V. Stariy, A.V. Sukach, V.V. Tetyorkin, V.O. Yukhymchuk, T.R. Stara, “Effect of thermal annealing on electrical and photoelectrical properties of n-InSb”, Semiconductor Physics Quantum Electronics & Optoelectronics, 2017, 20 ,105-109.
    [68] A.M. Alfantazi, R.R. Moskalyk, “Processing of indium: a review”, Minerals Engineering, 2003, 16, 687-694.
    [69] S.P. Iliev, X. Chen, M.V. Pathan, V.L. Tagarielli, “Measurements of the mechanical response of indium and of its size dependence in bending and indentation”, Materials Science & Engineering: A, 2017, 683, 244-251.
    [70] Ning Du, Hui Zhang, Bindi Chen, Xiangyang Ma, Zhihong Liu, Jianbo Wu, and Deren Yang, “Porous indium oxide nanotubes: layer-by-layer assemblyon carbon-nanotube templates and applicationfor room-temperature NH3 gas sensors”, Advanced Materials, 2007, 19, 1641-1645.
    [71] JunTamaki, Chizuko Naruo, Yoshifumi Yamamoto and Masao Matsuoka, “Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation”, Sensors and Actuators B: Chemical, 2002, 83, 190-194.
    [72] Yuzo Shigesato, Satoru Takaki, and Takeshi Haranoh, “Electrical and structural properties of low resistivity tin‐doped indium oxide films”, Journal of Applied Physics, 1992, 71, 3356-3364.
    [73] K. Sreenivas, T. Sudersena Rao, and Abhai Mansingh, “Preparation and characterization of rf sputtered indium tin oxide films”, Journal of Applied Physics, 1985, 57, 384-392.
    [74] Martin Liess, “Electric-field-induced migration of chemisorbed gas molecules on a sensitive film - a new chemical sensor”, Thin Solid Films, 2002, 410, 183-187.
    [75] Yennai Wang, Junhong Chi, Karan Banerjee, Detlev Grützmacher, Thomas Schäpers and Jia G. Lu, “Field effect transistor based on single crystalline InSb nanowire”, Journal of Materials Chemistry, 2011, 21, 2459-2462.
    [76] Pulickel M. Ajayan, Linda S. Schadler, Cindy Giannaris, and Angel Rubio, “Single-walled carbon nanotube-polymer composites: Strength and weakness”, Advanced Materials, 2000, 12, 750-753.
    [77] Atanu Patra , Monodeep Chakraborty and Anushree Roy, “Mapping of the electronic band gap along the axis of a single InAs/InSbxAs1−x heterostructured nanowire”, Nanoscale, 2016, 8, 18143-18149.
    [78] X. Wang, K. Kunc, I. Loa, U. Schwarz and K. Syassen, “Effect of pressure on the Raman modes of antimony”, Physical Review B, 2006, 74, 134305.
    [79] Henan Liu, Yong Zhang, Elizabeth H. Steenbergen, Shi Liu, Zhiyuan Lin, Yong-Hang Zhang, Jeomoh Kim, Mi-Hee Ji, Theeradetch Detchprohm, Russell D. Dupuis, Jin K. Kim, Samuel D. Hawkins, and John F. Klem, “Raman scattering study of lattice vibrations in the type-II superlattice InAs / InAs1-xSbx”, Physical Review Applied, 2017, 8, 034028.
    [80] YANG Youwen, ZHU Wenbin, LI Tianying, MA Dongming, CHEN Dong, “Controlled fabrication and spectral characterization of InSb nanowire arrays”, Chemical Journal of Chinese Universities, 2016, 35, 466-470.
    [81] John Ballato, Thomas Hawkins, Paul Foy, Colin McMillen, Laura Burka, Jason Reppert, Ramakrishna Podila, A. M. Rao, and Robert R. Rice, “Binary III-V semiconductor core optical fiber”, Optics Express, 2010, 18, 4972-4979.
    [82] Shau-Chieh Wang, Ming-Yen Lu, Afsal Manekkathodi, Pei-Hsuan Liu, Hung-Chiao Lin, Wun-Shan Li, Te-Chien Hou, Shangjr Gwo, and Lih-Juann Chen, “Complete replacement of metal in metal oxide nanowires via atomic diffusion: In/ZnO case study”, Nano Letters, 2014, 14, 3241-3246.
    [83] Sayed Y. Sayed, Feng Wang, Marek Malac, Al Meldrum, Ray F. Egerton and Jillian M. Buriak, “Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement”, ACS Nano, 2009, 3, 2809-2817.
    [84] María de la Mata, César Magén, Philippe Caroff, and Jordi Arbiol, “Atomic scale strain relaxation in axial semiconductor III−V nanowire heterostructures”, Nano Letters, 2014, 14, 6614-6620.

    QR CODE