簡易檢索 / 詳目顯示

研究生: 蔡青凌
Cing-Ling Tsai
論文名稱: 應用原子力顯微鏡於矽基材進行奈米氧化術之探討
The Study of Nano-Oxidation on Si Substrate by AFM Lithography
指導教授: 周賢鎧
Shyankay Jou
口試委員: 曾安培
Ampere A. Tseng
黃仁清
Jen-Ching Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 111
中文關鍵詞: 原子力顯微鏡氧化術奈米氧化物
外文關鍵詞: AFM, Lithography, Si, Nano-Oxidation
相關次數: 點閱:190下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用原子力顯微鏡之奈米氧化術,直接在單晶矽表面上產生局部陽極氧化(Tip-Induced Local Anodic Oxidation),並以導電探針施加偏壓的方式來進行奈米氧化線及奈米仿圓形圖案加工,並觀察其氧化物的成長情形。
    在奈米氧化線方面,控制參數為探針移動速率、電壓形式、相對濕度率,另一方面在奈米仿圓形圖案方面,控制參數為電壓、邊數、重複次數。實驗後發現隨著電壓的增加,氧化線成長的高度也會隨之增加,且成正比關係,但在移動速率愈快時氧化物之高度反而越低且線寬越窄。


    Using Atomic Force Microscopy Lithography (AFM Lithography) tip-induced local anodic oxidation on the native SiO2 layer of Si is performed to fabricate oxide patterns. The AFM tip applied with a positive bias can produce the oxide patterns in nano-scale.
    In nano-oxidation line, We can control the height by means of various tip moving rate, voltage and relative humidity to understand the growth rate of anodic oxidation. Another in nano-oxdation of circle like that adjust the height by means of various voltage, sides and repeat frequency. From the experiment result, we find that the oxide height increase while voltage increase. But the height of oxide will decrease and the width of oxide become narrow while tip moving rate is increase.

    第一章、緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機 第二章、原子力顯微鏡之介紹 2.1 設備裝置 2.1.1 SPM Head 2.1.2 Vacuum Power Switch 2.1.3 X-Y Stage 2.2 基本原理 2.3 掃描方式 2.3.1 接觸式原子力顯微鏡( Contact Mode AFM ) 2.3.2 非接觸式原子力顯微鏡( Non-Contact Mode AFM ) 2.3.3 輕敲式原子力顯微鏡( Tapping Mode AFM ) 2.3.4 综合比較 第三章、奈米氧化術 3.1 奈米氧化術之原理 3.2 場致氧化效應 3.3 Cabrera-Mott理論 3.4 修正Cabrera-Mott 理論 第四章、實驗方法及規劃 4.1 D3100 AFM Contact Mode 操作方式 4.2 數據分析 4.3 奈米氧化之程式流程 4.4 實驗規劃 第五章、結果與討論 5.1 製程參數對奈米線高度的影響 5.1.1 探針移動速率 5.1.2 電壓型式之影響 5.1.3 相對濕度 5.2製程參數對奈米圓的影響 5.2.1 單晶矽形式 5.2.2 仿圓形圖案之邊數 5.2.3 重複次數 第六章、結論及未來展望 6.1 總結 6.2 未來展望 參考文獻 作者簡介

    [1]G. Binning, H. Rohrer, C. Gerber and E. Weibel,“ Surface Studies by Scanning Tunneling Microscopy,” Physical Review Letters, Volume 49, pp. 57-61 (1982).
    [2]R. S. Becker, J. A. Golovchenko, B. S. Swartzentruber,“ Atomic-Scale Surface Modifications Using a Tunnelling Microscope,” Nature 325, pp. 419-421 (1987).
    [3]J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek and J. Bennet,“ Imaging of Passivated III–V Semiconductor Surfaces by a Scanning Tunneling Microscope Operating in Air,” Ultramicroscopy, Volumes 42-44, Part 2, pp. 1288-1294 (1992).
    [4]D. Wang, L. Tsau, and K. L. Wang,“ Nanometer Scale Patterning of Silicon (100) Surfaces by an Atomic Force Microscope Operating in Air,” Applied Physics Letters 64, pp. 2133(1994).
    [5]E. S. Snow and P. M. Cambell,“ Fabrication of Si Nanostructures with an Atomic Force Microscope ”, Applied Physics Letters, Volume 64, No.15, pp. 2001-2003 (1994).
    [6]T. Teuschler, K. Mahr, S. Miyaxaki, M. Hundhausen, and L. Ley, “ Nanometer-Scale Field-Induced Oxidation of Si(111):H by a Conducting-Probe Scanning Force Microscope: Doping Dependence and Kinetics,” Applied Physics Letters, Volume 67, No.21, pp. 2001-2003 (1995).
    [7]M. Komiyama, K. Tsujimichi, K. Tazawa, A. Hirotani, H. Yamano, M. Kubo, E. Broclawik and A. Miyamoto,“ Simulation of AFM & LFM by Molecular Dynamics-Role of Lateral Force in Contact-Mode AFM Imaging,” Surface Science, Volumes 357-358 , pp. 222-227 (1996).
    [8]M. Nagase, A. Fujiwara, K. Yamazaki, Y. Takahashi, K. Murase and K.Kurihara,“ Si Nanostructures Formed by Pattern-Dependent Oxidation,” Microelectronic Engineering 41/42, pp. 527-530 (1998).
    [9]Y. Kaibara, K. Sugata, M. Tachiki, H. Umezawa, H. Kawarada,“ Control Wettability of the Hydrogen-Terminated Diamond Surface and the Oxidized Diamond Surface Using an Atomic Force Microscope,” Diamond and Related Materials 12, pp. 560–564 (2003).
    [10]S. Myhra,“ Manipulation of Si Oxide and Electrically Conducting Carbon Films by Scanning Probe Microscopy (SPM): Nano-Lithography and Nano-Machining,” Thin Solid Films 459, pp. 90–94 (2004).
    [11]C. Mart´ın, G. Rius, X. Borris´e and F. P´erez-Murano,“ Nanolithography on Thin Layers of PMMA Using Atomic Force Microscopy,” Nanotechnology 16, pp. 1016–1022 (2005).
    [12]C. Hong Park, S. Baeb, H. Lee,“ Nano-Oxidationof Si Using AC Modulation in Atomic Force Microscope Lithography,”Colloids and Surfaces A: Physicochemical and Engineering Aspects 284–285, pp. 552–555 (2006).
    [13]T. Vijaykumar, G. U. Kulkarni,“ A study of LAO Nanopatterns on Si Substrates of Different Crystallographic Orientations,” Solid State Communications 142, pp. 89–93 (2007).
    [14]汪建民主編、楊長謀主筆,材料分析,中國材料科學學會,第十一章,民國 八十七年。
    [15]賴信文、許如宏、何恕德、林鶴南,“ 掃描探針顯微術於微影成像上的應用” ,2002年材料科學年會論文集, PL-38,民國九十一年。
    [16]Dimension 3100 Manual, Veeco Metrotogy Group Digital Instruments (2002).
    [17]Scanning Probe Microscopy Training Notebook, Veeco Metrotogy Group Digital Instruments (2002).
    [18]Te-Hua Fang,“ Mechanisms of Nanooxidation of Si(100) from Atomic Force Microscopy,” Microelectronics Journal 35, pp. 701–707 (2004).
    [19]劉博文,ULSI 製程技術,文京圖書有限公司,民國九十年。
    [20]F. Marchi, V. Bouchiat, H. Dallaporta, V. Safarov, and D. Tonneau,“ Growth of Silicon During Lithography with an Atomic Force Microscope,” The Journal of Vacuum Science and Technology B 16 (6), pp. 2952-2956 (1998).
    [21]N Cabrera and N F Mott,“ Theory of the Oxidation of Metals,” Reports on Progress in Physics 12, pp. 163-184 (1949).
    [22]A. Atkinson,“ Transport Processes during the Growth of Oxide Films at Elevated Temperature,” Reviews of Modern Physics 57, pp. 437- 470 (1985).
    [23]D. Stievenard, P. A. Fontaine, and E. Dubois,“ Nanooxidation Using a Scanning Probe Microscope: An Analytical Model Based on Field Induced Oxidation,” Applied Physics Letters 70, No.24, pp. 3272-3274 (1997).
    [24]黃仁清教授編,“ D3100 AFM Contact Mode 操作手冊”,東南科技大學機械系描探針奈米科技實驗室,民國九十五年。
    [25]洪宗佑,“ 非接觸原子力顯微術之場致氧化研究” ,國立清華大學,碩士論文,民國八十九年。
    [26]連姿婷,“ 矽表面原子力顯微鏡之奈米氧化機制─晶面方向及氫鈍化層之效應” ,國立清華大學,碩士論文, 民國八十八年。

    QR CODE