簡易檢索 / 詳目顯示

研究生: 許翔閎
Hsiang-Hong Hsu
論文名稱: 以流場與溫度場可視化方法探討化學機械平坦化製程中晶圓溫度分布與製程表現之關係
Investigation of the correlation between wafer temperature distribution and process performances in chemical mechanical planarization process by flow and temperature visualization methods
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 蘇裕軒
Yu-Hsuan Su
溫琮毅
Tsrong-Yi Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 141
中文關鍵詞: 化學機械平坦化流場可視化紫外線誘導螢光溫度場可視化溫度感測染料
外文關鍵詞: Chemical Mechanical Polishing, flow visualization, UV-excitation fluorescence method, Temperature visualization, Temperature Sensitive Paint (TSP)
相關次數: 點閱:273下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建構一套化學機械平坦化(Chemical Mechanical Planarization, CMP)之流場可視化(Flow Visualization, FV)與溫度場可視化(Temperature Visualization, TV)設置,透過改變製程參數來觀察CMP製程中的流場表現與晶圓溫度分布。在流場可視化中,使用紫外光誘導螢光的方法(UV-excitation fluorescence method, UVEF),將螢光溶液代替拋光液觀察拋光液之弓形波形成及晶圓內的分布情形。而溫度場可視化使用量子點製成的溫度感測塗料(Temperature Sensitive Paint, TSP),以旋轉塗佈機塗佈於晶圓背面,再利用TSP對溫度的敏感性量測晶圓的溫度分布及變化。研究中改變拋光墊轉速、晶圓轉速、注入方法等製程參數,並探討性能指標的變化。從流場可視化實驗之結果可以發現,弓形波大致從晶圓影像中左下半部,也就是晶圓前緣(Leading edge)開始形成。增加拋光墊轉速及晶圓旋轉對流場的均勻性對於拋光液濃度均勻性均有明顯的提升,但平均螢光強度則會變小。不同注入方法後對於弓形波的形成或是晶圓內的散佈情形皆有明顯影響,其中單管35 mm無論是平均光強度或拋光液濃度均勻性,均有較佳表現。從溫度場量測的結果可以得知,在熱水實驗中,晶圓被熱水加熱的區域有從晶圓前緣延伸至後緣(Trailing edge)的趨勢,與弓形波觀測結果相當。晶圓轉速與拋光墊轉速增加皆會增加溫度分布的均勻性,並且發現單管35 mm在平均溫度以及溫度分布均勻性表現皆較佳,與流場可視化的結果相符。在C8902實驗可以發現,單管35 mm在材料去除率(Material Removal Rate, MRR)的表現以及晶圓內不均勻性(Within-Wafer Non-Uniformity, WIWNU)皆為最佳,且溫度與MRR呈正相關。使用單管35 mm並且在高晶圓轉速以及拋光墊轉速則有最佳的MRR以及WIWNU。


    In this study, an experimental setup of flow visualization (FV) and temperature visualization in Chemical Mechanical Planarization (CMP) was constructed. The performance of slurry flow and temperature distribution were observed by changing the process parameters. In flow visualization, UV-excitation fluorescence method (UVEF) is used to investigate the bow wave and the distribution of slurry flow within the wafer by replacing the polishing solution with the fluorescent solution. In temperature visualization, Temperature Sensitive Paint (TSP) made of quantum dots is coated on the back of the wafer by spin coating to investigate temperature rise and distribution on the wafer. In this study, process parameters including changing the pad rotation speed, wafer rotation speed, slurry injection system, etc. were varied and the influences to performance indices are investigated. The results of flow visualization show that the bow wave was generated from the leading edge, which is the lower left half of the wafer. Increasing the rotation speed of the polishing pad and wafer both have a significant improvement to the uniformity of the flow field, yet the average fluorescence intensity decreases. Different slurry injection methods have significant influences to both the formation of the bow wave and the slurry distribution at the wafer. Both the average fluorescence intensity and the uniformity of the single-tube 35 mm case had better results. The results of temperature visualization show that in the hot water experiment, the region heated by hot water on the wafer extends from the leading edge to the trailing edge. This finding agrees with the FV results of the bow wave. Increasing the rotation speed of the polishing pad and wafer significantly improve the uniformity of temperature distribution, and both the temperature rise and the uniformity of for the single-tube 35 mm case were better in the overall results. These results are consistent with the flow visualization results. The C8902 slurry experiment results show that the performance in Material Removal Rate (MRR) and Within-Wafer Non-Uniformity (WIWNU) of the single-tube 35 mm case is better than the other slurry injection methods, and temperature rise is positively correlated with the value of MRR. Using single-tube 35 mm slurry injection at high wafer and pad rotation speed yields the best MRR and WIWNU performances.

    目錄 Abstract 3 致謝 5 圖目錄 8 表目錄 12 第一章 緒論 13 1.1. 研究背景..............................................................................................13 1.2. 文獻回顧..............................................................................................15 1.2.1. 化學機械平坦化之製程參數......................................................16 1.2.2. 拋光液注入方法..........................................................................17 1.2.3. 溫度對化學機械平坦化製程之影響..........................................18 1.2.4. 溫度感測塗料(Temperature sensitive paint, TSP)......................20 1.2.5. 小結..............................................................................................22 1.3. 研究目的..............................................................................................22 1.4. 論文架構..............................................................................................23 第二章 實驗原理與方法 24 2.1. CMP 硬體設置 ....................................................................................24 2.1.1. 晶圓模型與晶圓固定環設置......................................................25 2.1.2. 拋光墊設置..................................................................................31 2.1.3. 下壓力設置方法..........................................................................33 2.1.4. 拋光液注入系統..........................................................................34 2.1.5. 拋光液之調配..............................................................................37 2.2. 流場可視化..........................................................................................41 2.2.1. 紫外線激發螢光方法(UVEF) ....................................................41 2.2.2. 流場可視化之光學設置..............................................................41 2.2.3. 流場可視化之影像後處理..........................................................46 2.3. 溫度場可視化......................................................................................49 2.3.1. 溫度感測塗料之原理..................................................................49 2.3.2. 溫度感測塗料之製備..................................................................52 2.3.3. 溫度校正曲線之實驗設置..........................................................62 7 2.3.4. 溫度場可視化之影像後處理......................................................65 2.4. 溫度量測不準度分析..........................................................................72 2.5. 晶圓相對位置之影像..........................................................................73 2.6. 材料去除率與不均勻性量測..............................................................75 2.6.1. 材料去除率之量測......................................................................75 2.6.2. 晶圓內不均勻性之量測..............................................................77 2.7. 實驗參數規劃......................................................................................80 第三章 結果與討論 83 3.1. 流場可視化之結果..............................................................................83 3.1.1. 不同參數下之弓形波形成..........................................................83 3.1.2. 不同參數下之晶圓內拋光液分布..............................................90 3.1.3. 小結..............................................................................................97 3.2. 溫度場可視化之水實驗結果..............................................................99 3.2.1. 注入溫度之影響..........................................................................99 3.2.3. 不同拋光墊轉速對溫度之影響................................................103 3.2.4. 不同注入方法對溫度之影響....................................................106 3.2.5. 不同晶圓轉速對溫度之影響....................................................111 3.2.6. 小結............................................................................................116 3.3. C8902 之實驗結果............................................................................117 3.3.1. 不同注入方法之影響................................................................117 3.3.2. 不同轉速組合之影響................................................................123 3.3.3. 小結............................................................................................129 3.4. 討論....................................................................................................129 3.4.1. 與前人之研究比較....................................................................129 3.4.2. 實驗方法之限制........................................................................132 第四章 結論與未來建議 133 4.1. 結論....................................................................................................133 4.2. 建議與未來工作................................................................................134 參考文獻 135

    參考文獻
    [1] 鐘. 楊子明, 沈志彥, 李美儀, 吳鴻佑, 詹家瑋, 半導體製程設備技術, 2 版
    ed. 2017.
    [2] H. Lee, D. Lee, and H. Jeong, "Mechanical aspects of the chemical
    mechanical polishing process: A review," International Journal of Precision
    Engineering and Manufacturing, vol. 17, no. 4, pp. 525-536, 2016, doi:
    10.1007/s12541-016-0066-0.
    [3] D. Zhao and X. Lu, "Chemical mechanical polishing: Theory and experiment,"
    Friction, vol. 1, no. 4, pp. 306-326, 2013, doi: 10.1007/s40544-013-0035-x.
    [4] H. Xiao, Introduction to semiconductor manufacturing technology, Second
    edition ed. 2012.
    [5] B. Shin, D. Lee, E. Park, and H. Jeong, "Effect of slurry temperature on
    removal characteristics in cadmium telluride CMP," in Proceedings of
    International Conference on Planarization/CMP Technology 2014, 2014:
    IEEE, pp. 300-301.
    [6] D. Kwon, H. Kim, and H. Jeong, "Heat and its effects to chemical mechanical
    polishing," Journal of Materials Processing Technology, vol. 178, no. 1-3, pp.
    82-87, 2006, doi: 10.1016/j.jmatprotec.2005.11.025.
    [7] H. Lee, Y. Guo, and H. Jeong, "Temperature distribution in polishing pad
    during CMP process: Effect of retaining ring," International Journal of
    Precision Engineering and Manufacturing, vol. 13, no. 1, pp. 25-31, 2012,
    doi: 10.1007/s12541-012-0004-8.
    [8] C. Lee, J. Park, M. Kinoshita, and H. Jeong, "Analysis of pressure distribution
    and verification of pressure signal by changes load and velocity in chemical
    mechanical polishing," International Journal of Precision Engineering and
    Manufacturing, vol. 16, no. 6, pp. 1061-1066, 2015, doi: 10.1007/s12541-015-
    0137-7.
    [9] Y. Guo, H. Lee, Y. Lee, and H. Jeong, "Effect of pad groove geometry on
    material removal characteristics in chemical mechanical polishing,"
    International Journal of Precision Engineering and Manufacturing, vol. 13,
    no. 2, pp. 303-306, 2012, doi: 10.1007/s12541-012-0038-y.
    [10] S. Hong, S. Bae, S. Choi, P. Liu, H. Kim, and T. Kim, "A numerical study on
    slurry flow with CMP pad grooves," Microelectronic Engineering, vol. 234,
    2020, doi: 10.1016/j.mee.2020.111437.
    [11] M.-N. Fu and F.-C. Chou, "Flow simulation for chemical mechanical
    planarization," Japanese journal of applied physics, vol. 38, no. 8R, p. 4709,
    1999.
    [12] D. Lee, H. Lee, and H. Jeong, "The effects of a spray slurry nozzle on copper
    CMP for reduction in slurry consumption," Journal of Mechanical Science
    and Technology, vol. 29, no. 12, pp. 5057-5062, 2015, doi: 10.1007/s12206-
    015-1101-2.
    [13] M. Bahr, Y. Sampurno, R. Han, and A. Philipossian, "Slurry Injection
    Schemes on the Extent of Slurry Mixing and Availability during Chemical
    Mechanical Planarization," Micromachines, vol. 8, no. 6, 2017, doi:
    10.3390/mi8060170.
    [14] M. Bahr, Y. Sampurno, R. Han, M. Skillman, L. Borucki, and A. Philipossian,
    "Effect of Slurry Injection System Position on Removal Rate for Shallow
    Trench Isolation Chemical Mechanical Planarization Using a Cerium Dioxide
    Slurry," ECS Journal of Solid State Science and Technology, vol. 6, no. 7, pp.
    P455-P461, 2017, doi: 10.1149/2.0321707jss.
    [15] T. Fujita and J. Watanabe, "Slurry Supply Mechanism Utilizing Capillary
    Effect in Chemical Mechanical Planarization," ECS Journal of Solid State
    Science and Technology, vol. 8, no. 5, pp. P3069-P3074, 2019, doi:
    10.1149/2.0111905jss.
    [16] H. Jo, D. S. Lee, S. H. Jeong, H. S. Lee, and H. D. Jeong, "Hybrid CMP Slurry
    Supply System Using Ionization and Atomization," Applied Sciences, vol. 11,
    no. 5, 2021, doi: 10.3390/app11052217.
    [17] L. V. Bengochea, Y. Sampurno, C. Stuffle, R. Han, C. Rogers, and A.
    Philipossian, "Visualizing Slurry Flow in Chemical Mechanical Planarization
    via High-Speed Videography," ECS Journal of Solid State Science and
    Technology, vol. 7, no. 3, pp. P118-P124, 2018, doi: 10.1149/2.0191803jss.
    [18] 陳逸翔, "以流場可視化方法探討化學機械研磨製程中研磨液流動行為與
    濃度分佈," 碩士, 機械工程系, 國立台灣科技大學, 台北市, 2019.
    [19] 王子軒, "探討化學機械拋光製程中機台參數對拋光液濃度分佈之影響,"
    碩士, 機械工程系, 國立台灣科技大學, 台北市, 2020.
    [20] C. Wu et al., "Pad Surface Thermal Management during Copper Chemical
    Mechanical Planarization," ECS Journal of Solid State Science and
    Technology, vol. 4, no. 7, pp. P206-P212, 2015, doi: 10.1149/2.0101507jss.
    [21] Y. A. Sampurno, L. Borucki, Y. Zhuang, D. Boning, and A. Philipossian, "A
    Method for Direct Measurement of Substrate Temperature during Copper
    CMP," Journal of The Electrochemical Society, vol. 152, no. 7, 2005, doi:
    10.1149/1.1925070.
    [22] T. Suratwala, M. D. Feit, W. A. Steele, L. L. Wong, and G. Pharr, "Influence
    of Temperature and Material Deposit on Material Removal Uniformity during
    Optical Pad Polishing," Journal of the American Ceramic Society, vol. 97, no.
    6, pp. 1720-1727, 2014, doi: 10.1111/jace.12969.
    [23] M. Yuh, S. Jang, I. Park, and H. Jeong, "Wafer size effect on material removal
    rate in copper CMP process," Journal of Mechanical Science and Technology,
    vol. 31, no. 6, pp. 2961-2964, 2017, doi: 10.1007/s12206-017-0539-9.
    [24] Y. Park, Y. Lee, H. Lee, and H. Jeong, "Effect of heat according to wafer size
    on the removal rate and profile in CMP process," Electronic Materials Letters,
    vol. 9, no. 6, pp. 755-758, 2013, doi: 10.1007/s13391-013-6003-9.
    [25] T. Liu, J. P. Sullivan, K. Asai, C. Klein, and Y. Egami, Pressure and
    temperature sensitive paints. Springer, 2005.
    [26] M. D. Chambers, P. A. Rousseve, and D. R. Clarke, "Luminescence
    thermometry for environmental barrier coating materials," Surface and
    Coatings Technology, vol. 203, no. 5-7, pp. 461-465, 2008, doi:
    10.1016/j.surfcoat.2008.07.028.
    [27] T. Cai, D. Peng, Y. Z. Liu, X. F. Zhao, and K. C. Kim, "A novel lifetimebased phosphor thermography using three-gate scheme and a low frame-rate
    camera," Experimental Thermal and Fluid Science, vol. 80, pp. 53-60, 2017,
    doi: 10.1016/j.expthermflusci.2016.08.017.
    [28] 陳鋒儒, "以實驗方法探討微流道交錯式薄膜氣泡腔體誘導聲流之流場與
    熱傳增益," 2017.
    [29] M. Alfaro, G. Paez, and M. Strojnik, "Calibration and evaluation of EuTTA
    fluorescence as active medium for IR-to-visible conversion," in Infrared
    Spaceborne Remote Sensing and Instrumentation XVI, 2008, vol. 7082: SPIE,
    pp. 208-217.
    [30] C.-Y. Huang, C.-A. Li, H.-Y. Wang, and T.-M. Liou, "The application of
    temperature-sensitive paints for surface and fluid temperature measurements
    in both thermal developing and fully developed regions of a microchannel,"
    Journal of Micromechanics and Microengineering, vol. 23, no. 3, 2013, doi:
    10.1088/0960-1317/23/3/037001.
    [31] G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi,
    and D. G. Nocera, "Quantum-dot optical temperature probes," Applied Physics
    Letters, vol. 83, no. 17, pp. 3555-3557, 2003, doi: 10.1063/1.1620686.
    [32] 葉子毓, "以溫度可視化方法探討化學機械拋光製程中晶圓溫度分布," 碩
    士, 機械工程系, 國立台灣科技大學, 台北市, 2021.
    [33] 林昱銘, "電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用
    於矽導微孔晶," 碩士, 機械工程系, 國立台灣科技大學, 台北市, 2018.
    [34] 吳尚諭, "溫度感測循跡微粒應用於微尺度流動之溫度場資料後處理_定
    稿," 碩士, 機械工程系, 國立台灣科技大學, 台北市, 2021.
    [35] 謝嘉民、賴一凡、林永昌、枋志堯. 光激發螢光量測的原理、架構及應
    用. 科儀新知.
    [36] 王健宇, "利用螢光壓力感測技術之影像處理與溫度修正量測機翼於低速
    風洞中之表面壓力分布," 碩士, 動力機械工程系, 國立清華大學, 新竹市,
    2019.
    [37] 楊誌欽, 半導體量測理論與實務. 台灣台中市: 張麗紅, 2013.

    QR CODE