簡易檢索 / 詳目顯示

研究生: 廖証億
Cheng-i Liao
論文名稱: 以高溫爐化學氣相沉積法成長氮化鎵及氮化銦鎵奈米線
Synthesis of GaN and InGaN nanowires on the substrate by CVD in the furnace
指導教授: 陳良益
Liang-yih Chen
口試委員: 洪儒生
none
吳季珍
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 112
中文關鍵詞: 氮化鎵化學氣相沉積法氣-固成長機制
外文關鍵詞: gallium nitride, chemical vapor deposition method, vapor-solid growth mechanism
相關次數: 點閱:437下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究主要在於利用水平式高溫爐化學氣相沉積法成長氮化鎵及其相關的一維奈米線材料。在氮化鎵奈米線的成長上,主要使用乙醯丙酮鎵(III)(Gallium(III) acetylacetonate)與氨氣作為成長的鎵與氮的來源,並於900oC的反應溫度下,在鍍有金觸媒之矽基板上進行成長。在實驗條件的探討上,主要以低流量與高流量載送氣體進行鎵元素的傳輸,同時調變氨氣流量來成長奈米線。由分析的結果初步推測氮化鎵奈米線的主要以氣-固成長機制進行,成長方向為 方向。奈米線之型態與成長機制變化與氨氣流量有關,增加氨氣流量將導致奈米線表面粗糙化。同時由X光光電子光譜分析奈米線鍵結狀態,可得知在低氨氣流量狀態下奈米線表面為Ga-O鍵結存在,但奈米線主體結構仍為氮化鎵。
此外,在本研究中同時探討在550oC成長溫度之下於成長源中添加不同比例的乙醯丙酮銦(III)(Indium(III) acetylacetonate)進行氮化銦鎵一維奈米線成長的可能性。在較低氨氣流量下,因氮源不足,導致氧化鎵奈米線生成而非氮化銦鎵奈米線。而在高流量氨氣狀態下,則因為氮源的提供增加了,降低了氧化物於奈米線中的含量,不過仍無法有效避免氧化鎵奈米線的形成。而由高解析分析式電子顯微鏡,可觀察到有雙晶結構貫穿整個奈米線。


gas and reactive gas flow rates was modulated to grow GaN nanowires. From analysis results, GaN nanowires were grown via vapor-solid (VS) growth mechanism and the growth direction along . The shapes and growth mechanism were related to the ammonium flow rates. The morphologies of GaN nanowires were rough with increasing ammonium flow rates. Additionally, the binding state of nanowires can be analyzed by X-ray photoelectron spectroscopy (XPS). Ga-O bond can be observed on the surface of nanowires in low ammonium flow rate condition; however, the body of nanowire is still GaN structure.
In addition, indium gallium nitride nanowires with adding indium acetylacetonate as indium source were grown in 550oC. In low ammonium flow rate condition, nanowires belong to gallium oxide (Ga2O3) can be characterized by X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) due to absence of enough nitrogen source. Increasing ammonium flow rate can efficiently decrease the amount of oxygen in nanowires. However, it still can not avoid the gallium oxide formed. From TEM analysis, the twinned structure can be observed and passes through the whole nanowires.

中文摘要 Ⅰ 英文摘要 Ⅲ 目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 緒論1 1.1Ⅲ‐Ⅴ族半導體發展與應用1 1.2Ⅲ‐Nitride半導體材料4 1.2.1氮化鎵4 1.2.2氮化銦4 1.2.3氮化銦鎵5 1.3研究動機8 第二章 理論基礎與文獻回顧9 2.1真空系統9 2.1.1真空理論9 2.1.2真空泵浦與真空壓力計14 2.2成長一維奈米線之機構與方法16 2.2.1氣-液-固機構18 2.2.2固-液-固機構23 2.2.3直接薄板合成法24 2.2.4化學氣相沉積法27 第三章 實驗方法與步驟32 3.1實驗流程圖34 3.2實驗用藥品與氣體35 3.2.1實驗用藥品36 3.2.2實驗用基板37 3.2.3實驗用氣體37 3.3反應系統38 3.4奈米線成長方法41 3.4.1試片清洗41 3.4.2試片鍍金41 3.4.3一維氮化鎵奈米線成長步驟42 3.4.4一維氮化銦鎵奈米線成長步驟43 3.5特性分析之儀器介紹44 3.5.1場發射掃描式電子顯微鏡分析44 3.5.2 X光繞射儀分析45 3.5.3穿透分析式電子顯微鏡分析46 3.5.4拉曼散射光譜儀分析48 3.5.5X光光電子能譜儀分析50 第四章 結果與討論52 4.1化學氣相沉積法成長氮化鎵奈米線52 4.1.1低載送氣體下之氮化鎵奈米線成長52 4.1.1.1奈米線之型態探討53 4.1.1.2奈米線之結構探討54 4.1.1.3拉曼光譜分析56 4.1.1.4 X光光電子光譜分析57 4.1.2高載送氣體下之氮化鎵奈米線成長68 4.1.2.1奈米線之型態分析68 4.1.2.2奈米線之結構分析69 4.1.3製程參數對氮化鎵奈米線成長之探討75 4.1.4氮化鎵奈米線成長機制80 4.2化學氣相沉積法成長氧化銦鎵奈米線83 4.2.1低反應性氣體流量下之奈米線成長83 4.2.1.1奈米線之結構分析83 4.2.1.2奈米線之型態分析85 4.2.1.3 X光光電光譜分析85 4.2.2高反應性氣體流量下之氧化銦鎵奈米線成長93 4.2.2.1奈米線之結構分析93 4.2.2.2奈米線之型態分析95 4.2.2.3 X光光電子光譜分析96 第五章 結論106 第六章 參考文獻108

[1] W. Han, S. Fan, Q. Li, W. Liang, B. Gu, D. Yu, Chem. Phys. Lett. 265, 374
(1997).
[2] X. M. Cai, A. B. Djurišić, and M. H. Xie, C. S. Chiu and S. Gwo, Appl.
Phys. Lett. 87, 183103 (2005).
[3] H. Ahn, C.-H. Shen, C.-L Wu, and S.Gwo, Appl. Phys. Lett. 86, 201905
(2005).
[4] F. Ye, X.M. Cai, X.M. Wang, E.Q. Xie, J. Cryst. Growth. 304, 333 (2007).
[5] V. N. Tondare, C. Balasubramanian, S. V. Shende, D. S. Joag, V. P.
Godbole, S. V. Bhoraskar, Appl. Phys. Lett. 80, 4813 (2002).
[6] www.ledtimes.net/.../2008-01-04/tech_1387.html
[7] 游志樸,半導體材料,第242頁,台灣,92
[8] S. Yoshida and J. Suzuki, J. Appl. Phys. 84, 2940 (1998).
[9] S. Nakamura, T. Azuhata, K. Shimada, T. Deguchi, T. Sota, K. Suzuki, S.
Chichibu, Jpn. J. Appl. Phys. 38, L151 (1999).
[10] S. Strite, M. E. Lin and M. Morkoc, Thin Solid Films. 231, 197 (1993).
[11] J. H. Edgar, Properties of Group III Nitrides (EMIS Datareviews Series
No. 11, INSPEC, London, 1994).
[12] B. Gil, Group III Nitride Semiconductor Compounds-Physics and
Applications (Clarendon Press, Oxford, 1998).
[13] A. J. Steckl, R. Birkhahn, Appl. Phys. Lett. 73, 1700 (1998).
[14] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phsy. 89, 5815
(2001).
[15] H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, J. Am.
Chem. Soc. 125, 4728 (2003).
[16] H. Ahn, C. H. Shen, C. L. Wu, S. Gwo, Appl. Phys. Lett. 86, 201905 (2005).
[17] J. Camacho, P. V. Santos, F. Alsina, M. Ramsteiner, K. H. Ploog, A.
Cantarero, H. Oblosh, J. Wagner, J. Appl. Phys. 94, 1892 (2003).
[18] 呂登復,實用真空技術, 台灣, 92
[19] List, R. J., Smithsonian Meteorological Tables(6th rev. ed). 1951.
[20] B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Appl. Phys.
Lett. 66, 1316 (1995).
[21] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T.
Goto, Appl. Phys. Lett. 70, 2230 (1997).
[22] Y. Li, G. W. Meng, and L. D. Zhang, F. Phillipp, Appl. Phys. Lett. 76,
2011 (2000).
[23] Y. Cui, C. M. Lieber, Science. 291, 851 (2001).
[24] Y. Xia, P. Yang,Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Ying, F. Kim, H.
Yan, Adv. Mater. 15, 353 (2003).
[25] P. Krishna, R. C. Marshali, J. Cryst. Growth. 9, 319 (1971).
[26] C. Y. Nam, D. Tham, and J. E. Fischer, Appl. Phys. Lett. 85, 5676 (2004).
[27] O. I. Micic, J. Sprague, Z. Lu, A. J. Nozik, Appl. Phys. Lett. 68, 3150
(1996).
[28] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
[29] Y. Wu, P. Yang, Chem. Mater. 12, 605 (2000).
[30] Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
[31] X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
[32] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H.
Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 123, 2791
(2001).
[33] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng, Chem. Phys. Lett. 357, 314
(2002).
[34] Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, J. Cryst. Growth.
245, 163 (2002).
[35] Volker Schmidt and Ulrich Gösele, Science. 316, 698 (2007).
[36] S. Kodambaka, J. Tersoff, M. C. Reuter, F. M. Ross, Science. 316, 729
(2007).
[37] Richard White and Mark E. Welland, J. Appl. Phys. 102, 104301 (2007).
[38] P. D. Markowitz, M. P. Zach, P. C. Gibbson, R. M. Penner, W. E. Buhro, J.
Am. Chem. Soc. 123, 4502 (2001).
[39] S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, MRS Bulletin. 24, 36 (1999).
[40] H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. 27, 113
(1988).
[41] Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys. Chem. B. 101,
6661 (1997).
[42] E. T. T. Jones, O. M. Chyan, M. S. Wrighton, J. Am. Chem. Soc. 109, 5526
(1987).
[43] E. Kapon, K. Kash, E. M. Clausen Jr., D. M. Hwang, E. Colas, Appl. Phys.
Lett. 60, 477 (1992).
[44] G. Fasol, Science. 280, 545 (1998).
[45] R. M. Penner, J. Phys. Chem. B. 106, 3339 (2002).
[46] Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys. Chem. B. 101,
6661 (1997).
[47] 陳秋雲,VLSI製造技術, 台灣, 90
[48] H. P. Maruska, J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
[49] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P.
DenBaars, J. S. Speck, Appl. Phys. Lett. 68, 643 (1996).
[50] S. Yoshida, S. Misawa, S.Gonda, Appl. Phys. Lett. 42, 427 (1983).
[51] H. Amano, N. Sawaki, I. Akasaki, Y. Toyota, Appl. Phys. Lett. 48, 353
(1986).
[52] S. Nakamura, Y. Harada, M. Seno, J. Appl. Phys. 58, 2021 (1991).
[53] S. Yoshida, J. Suzuki, J. Appl. Phys. 84, 2940 (1998).
[54] T. Nakayama, Y. Takei, Phys. Stat. Sol C. 4, 259 (2007).
[55] I. H. Ho, G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
[56] M. K. Behbehani, E. L. Piner, S. X. Liu, N. A. El-Masry, Appl. Phys.
Lett. 75, 2202 (1999).
[57] H. K. Cho, J. Y. Lee, N. Sharma and C. J. Humphreys, G. M. Yang and C. S.
Kim, J. H. Song and P. W. Yu, Appl. Phys. Lett. 79, 2594 (2001).
[58] M. Rao, D. Kim, and S. Mahajan, Appl. Phys. Lett. 85, 1961 (2004).
[59] T. Kuykendall, P. Ulrich, S. Aloni, P. D. Yang, Nature. 6, 951 (2007).
[60] Cheng, G. S. Zhang, L. D. Zhu, Y. Fei, G. T. Li, L., Mo, C. M. Mao, Y. Q.
Appl. Phys. Lett. 75, 2455 (1999).
[61] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H.
Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 123, 2791
(2001).
[62] C. H. Liang and L. C. Chen, J. S. Hwang and K. H. Chen, Y. T. Hung and Y.
F. Chen, Appl. Phys. Lett. 81, 22 (2002).
[63] H. Li, C. Xue, H. Zhuang, J. Chen, Z. Yang, L. Qin, Y. Huang, D. Zhang,
Mater. Chem .Phys. 109, 249 (2008).
[64] S. Pal, T. Sugino, Appl. Surf. Sci. 161, 263 (2000).
[65] A. Trinchi, S. Kaciulis, L. Pandolfi, M. K. Ghantasala, Y. X. Li, W.
Wlodarski, S. Viticoli, E. Comini, G. Sberveglieri, Sens. Actuators B.
103, 129 (2004).
[66] X. C. Xu, J. M. Hong, Z. J. Han, Y. R. Tao, Chem. Phys. Lett. 373, 28
(2003).
[67] T. Sasaki, T. Matsuoka, J. Appl. Phys. 64, 4531 (1988).
[68] J. Zhang, L. Zhang, X. S. Peng, X. F. Wang, J. Mater. Chem. 12, 802
(2002).
[69] H. Shinoda, N. Mutsukura, Diamond Relat. Mater. 11, 896 (2002)
[70] Y. C. Lan, M. A. Crimp, J. M. Zhang, J. Cryst. Growth. 290, 585 (2006).

QR CODE