簡易檢索 / 詳目顯示

研究生: 吳秉昇
Ping-Sheng Wu
論文名稱: 混合位置/力量控制應用於機械手臂自動化打蠟之研究
Research of Hybrid Position/Force Control for Applying Automatic Waxing with a Robot Arm
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 林其禹
彭勝宏
溫哲彥
邱智瑋
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 機械手臂力量控制PID順應性控制
外文關鍵詞: robot arm, force control, PID, compliance control
相關次數: 點閱:322下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

工業型機械手臂通常應用於重複性高的動作,像是取放、搬運等等,這些動作通常是以位置模式控制的架構下實現,然而當機械手臂作業中需與外界環境接觸時,例如:研磨、拋光、去毛邊等…,就得考慮機械手臂終端的受力情況,因此必須使機械手臂對外力具有順應性的能力,而針對自動化打蠟這項作業,順應性控制中的混合位置/力量控制是可以達成目標的一種方法。
混合位置/力量控制是將機械手臂的六個自由度個別分成位置部分與力量部份去進行控制。由於六軸機械手臂終端力量控制之動力學模型是相當複雜與運算量大,在扭力模式下進行控制是非常不容易的,並且事實上機械手臂通常在位置模式架構下執行作業。因此本論文中混合位置/力量控制之力量部分使用PID控制器實現在位置模式架構下的終端力量控制,藉由力量/力矩感測器所量測到的外力與期望力量比較後產生的力量誤差信號經過PID控制器後輸出位置命令,其特性是在位置模式下,只需得到控制器的輸出再將位置帶入機械手臂反向運動學、調整機械手臂終端的位置即可達成力量部分的閉迴路控制。位置部分則是使用五次多項式進行軌跡規劃,設計出位置、速度以及加速度皆是連續的軌跡,使機械手臂能夠平滑、順暢的移動;最後將這兩部分整合在一起,建構出混合位置/力量控制應用於自動化打蠟系統架構。
實驗部分首先驗證力量/力矩坐標系轉換法的正確性,接著使用PID控制器並且加入死區策略進行力量控制實驗,最後再將單純位置控制下進行打蠟實驗與本研究所提出混合位置/力量控制架構進行打蠟實驗之結果進行比較,證實針對打蠟這項任務,本研究所提出控制方法有效,並且使不同材質的終端打蠟工具去驗證本研究方法可使用的彈性。


Industrial robots are usually used to do repeated work. For example, pick and place, handling and so on. At the same time, these robots are generally controlled under position control mode. However, it is necessary to consider about the external force of the end-effector when the robots need to contact with the environment of objects in the specific task, such as grinding, polishing, deburring and so on. Hence, the robot arm must have the ability of sensing and compliance for the external force. In the case of waxing, hybrid position/force control is a good way to implement.
Hybrid position/force control is a strategy to divide the robot arm’s six degree of freedom into parts, one is position control part, and the other is force control part. The dynamic model of six axes robot arm is so complicated that it is very difficult to control the robot arm under torque control mode. And the fact is that robots usually do the task under position control mode. So the PID controller is utilized to implement the force control of the end-effector. The advantage of PID controller is that it is easy to realize the end-effector’s force control under the position control mode. The closed loop control is achieve after getting the controller’s output, which is displacement of the end-effector, and then computing robot’s inverse kinematics to order the robot to adjust the position. The quintic polynomial is used for trajectory planning, robot will do the smooth motion by designing the trajectory which position, velocity and acceleration are all continuous.
Finally, the waxing system is realized by integrating the position part and the force part.
The experiment of the study include the fundamental experiment of the transformation of force/moment, force control, waxing under position control and waxing with hybrid position/force control strategy. At last, the method of the study will be proved as a better way to waxing task by comparing the result of position control and hybrid position/force control method. Moreover, the applicability of waxing system proposed by this study is proved by using sponge and woolen wheel as two kinds of different waxing tools.

目錄 中文摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 文獻討論 2 1.2.1 被動式順應性 2 1.2.2 主動式順應性 2 1.3 研究動機與目的 4 第 2 章 研究方法 5 2.1 混合位置/力量控制 5 2.2 五次多項式軌跡規劃法 7 2.3 PID控制 10 2.3.1 帶死區的PID控制 12 2.3.2 機械手臂終端的力量控制 13 2.4 力量/力矩坐標系轉換 14 第 3 章 機械手臂運動學分析 16 3.1 Denavit-Hartenberg轉換法 16 3.2 正向運動學 19 3.3 反向運動學 23 第 4 章 實驗結果與討論 25 4.1 實驗設備介紹 26 4.1.1 六軸機械手臂系統 26 4.2 實驗與結果 30 4.2.1 力量/力矩坐標系轉換基礎實驗 30 4.2.2 力量控制實驗 33 4.2.3 加入死區策略之力量控制實驗 38 4.2.4 位置控制下進行的打蠟實驗 40 4.2.5 混合位置/力量控制方法進行打蠟實驗 48 第 5 章 結論與未來展望 70 參考文獻 72

[1] ISO Standard 8373:1994, Robots and robotic devices — Vocabulary
[2] Lozano-Pérez, T., J.L. Jones, E. Mazer, and P.A. O'Donnell. 1989. “Task-Level Planning of Pick-and-Place Robot Motions.” Computer 22 (3): 21-29.
[3] Xiaohui Xie, and Lining Sun. 2016. “Force Control Based Robotic Grinding System And Apllication.” In 12th World Congress on Intelligent Control and Automation (WCICA), 2552-2555, Guilin, China.
[4] Rosell, J., J. Gratacos, and L. Basanez. 1999. “Automatic programming tool for robotic polishing tasks.” In Proceedings of the IEEE International Symposium on Assembly and Task Planning, 250-255. Porto, Portugal.
[5] Jinno, M., F. Ozaki, T. Yoshimi, K. Tatsuno, M. Takahashi, M. Kanda, Y. Tamada, and S. Nagataki. 1995. “Development of a force controlled robot for grinding, chamfering and polishing.” In IEEE International Conference on Robotics and Automation, 1455-1460. Nagoya, Japan.
[6] Fengjie Tian, Chong Lv, Zhenguo Li and Guangbao Liu. 2016. “Modeling and control of robotic automatic polishing for curved surfaces.” CIRP Journal of Manufacturing Science and Technology 14: 55-64.
[7] Liu, S., and H. Asada. 1993. “Task-level robot adaptive control based on human teaching data and its application to deburring.” In American Control Conference, 1414-1417. San Francisco, CA, USA.
[8] Kazerooni, H. 1999. “Automated Robotic Deburring Using Impedance Control.” IEEE Control Systems Magazine 8 (1): 21-25.
[9] Yong Tao, Jiaqi Zheng, Yuanchang Lin, Tianmiao Wang, Hegen Xiong, Guotian He and Dong Xu. 2015, “Fuzzy PID control method of deburring industrial robots.” Journal of Intelligent & Fuzzy Systems 29: 2447-2455.
[10] Zeng, G., and A. Hemami. 1997. “An overview of robot force control.” Robotica, 15 (5): 473-482.
[11] Okata, M., Y. Nakamura, and S. Hoshino. 2000. “Design of active/passive hybrid compliance in the frequency domain.” In Proceedings - IEEE International Conference on Robotics and Automation, 2250-2257. San Francisco, CA, USA.
[12] Bright, G., and C. Deubler. 1999. “Design and implementation of an intelligent remote centre compliance (IRCC) for state of the art process control and self optimization.” In Proceedings of the 1999 IEEE International Symposium on Industrial Electronics (ISIE'99), 929-933. Bled, Slovenia.
[13] Ciblak, N., and H. Lipkin. 2003. “Design and analysis of remote center of compliance structures.” Journal of Robotic Systems 20 (8): 415-427.
[14] Liu, Y., and M.Y. Wang. 2014. “Optimal design of remote center compliance devices of rotational symmetry.” IFIP Advances in Information and Communication Technology 435 (0): 161-169.
[15] Jalani, J., N. Mahyuddin, G. Herrmann, and C. Melhuish. 2013. “Active robot hand compliance using operational space and Integral Sliding Mode Control.” In 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing (AIM 2013) 1749-1754. Wollongong, NSW, Australia.
[16] Salisbury, J.K. 1980. “Active stiffness control of a manipulator in cartesian coordinates.” In Proceedings of the IEEE Conference on Decision and Control, 95-100. Albuquerque, NM.
[17] Degoulange, E., and P. Dauchez. 1994. “External force control of an industrial PUMA 560 robot.” Journal of Robotic Systems 11 (6): 523-540.
[18] Hogan, N. 1985. “Impedance Control: An Approach to Manipulation: Part III – Applications.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 107 (1) :17-24.
[19] Hogan, N. 1985. “Impedance control: an approach to manipulation: part I – theory.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 107 (1): 1-7.
[20] Hogan, N. 1985. “Impedance control: an approach to manipulation: part II –implementation.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 107 (1): 8-16.
[21] Raibert, M.H., and J.J. Craig. 1981. “Hybrid position/force control of manipulators.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 103 (2): 126-133.
[22] Volpe, R., and P. Khosla. 1993. “A theoretical and experimental investigation of explicit force control strategies for manipulators.” IEEE Transactions on Automatic Control 38 (11): 1634-1650.
[23] Volpe, R., and P. Khosla. 1992. “An experimental evaluation and comparison of explicit force control strategies for robotic manipulators.” In Proceedings - IEEE International Conference on Robotics and Automation 1387-1393. Nice, Fr.
[24] Cheah, C.C., and D. Wang. 1998. “Learning impedance control for robotic manipulators.” IEEE Transactions on Robotics and Automation 14 (3): 452-465.
[25] Ficuciello, F., L. Villani, and B. Siciliano. 2015. ”Variable Impedance Control of Redundant Manipulators for Intuitive Human–Robot Physical Interaction.” IEEE Transactions on Robotics 31 (4): 850-863.
[26] Pitakwatchara, P. 2015. “Task Space Impedance Control of the Manipulator Driven Through the Multistage Nonlinear Flexible Transmission.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 137 (2): 021001-1-021001-17.
[27] Pitakwatchara, P. 2015. “Task Space Impedance Control of the Manipulator Driven Through the Multistage Nonlinear Flexible Transmission.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 137 (2): 021001-1-021001-17.
[28] Connolly, T.H., and F. Pfeiffer. 1993. “Neural network hybrid position/force control,” 1993 International Conference on Intelligent Robots and Systems 240-244.Yokohama, Japan.
[29] Giblin, D.J., Y. Liu, and K. Kazerounian. 2008. “Target tracking robotic manipulation theories applied to force/position control in peg-in-hole assembly tasks.” International Journal of Robotics and Automation 23 (1): 49-54.
[30] Rabenorosoa, K., C. Clévy, and P. Lutz. 2010. “Hybrid force/position control applied to automated guiding tasks at the microscale.” In 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010) 4366-4371. Taipei, Taiwan.
[31] Zhang, J., D. Xu, Z.T. Zhang, and W.S. Zhang. 2013. “Position/force hybrid control system for high precision aligning of small gripper to ring object.” International Journal of Automation and Computing 10 (4): 360-367.
[32] 陶永華、尹心怡、葛蘆生,1998。 「新型PID控制及其應用」,機械工業出版社,北京市。

QR CODE