簡易檢索 / 詳目顯示

研究生: 陳柏彰
Po-Chang Chen
論文名稱: 主動慣質阻尼器力量控制技術開發與實驗驗證
Development and Validation of Force Tracking Control Methods for Active Inerter Dampers
指導教授: 陳沛清
Pei-Ching Chen
口試委員: 林子剛
許丁友
黃謝恭
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 206
中文關鍵詞: 慣質主動慣質阻尼器控制理論力量控制即時複合實驗啟發式演算法結構控制
外文關鍵詞: active inerter damper, force tracking control
相關次數: 點閱:195下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於建築結構系統質量大,主動控制的能量需求很大,本研究使用慣質元件取代質量塊,透過將直線運動轉變為旋轉運動能量轉換達到質量放大的效果,大幅降低傳統質量阻尼器質量塊體積與質量的需求,此新型的主動控制元件稱為主動慣質阻尼器。本研究以控制理論設計主動慣質阻尼器的兩種力量控制架構,實驗結果顯示,結合位移回饋與力量控制之控制方法,除了有效提升主動慣質阻尼器的力量追蹤控制性能並降低摩擦力的影響之外,更可減少致動器在結構受震後的永久位移量。
    地震模擬振動台常作為地震工程研究之實驗驗證工具,然而振動台實驗試體造價昂貴且實驗常不具可重複性,因此本研究中以即時複合實驗進行含主動慣質阻尼系統結構之耐震性能評估,將含主動慣質阻尼之十層樓結構拆解為數值模型與測試元件,其中十層樓結構為數值模型,主動慣質阻尼器為測試元件。本研究使用啟發式演算法進行結構控制律的最佳化,數值模型受到地震擾動後,透過結構控制律即時算出控制力,藉由安裝於實驗室之主動慣質阻尼器施加控制力後,將量測到的力量傳回數值模型,以完成即時複合實驗。實驗結果顯示,啟發式演算法最佳化之控制律較傳統能量法之控制律具有較好之耐震性能。此外,即時複合實驗可有效地應用於主動慣質阻尼結構系統之耐震性能評估,大幅地降低結構試體製作之成本與時間。
    最後,由於即時複合實驗無法得到主動慣質阻尼器與結構互制對力量控制性能之影響,本研究中以振動臺試驗進行含主動慣質阻尼系統之性能測試,藉以了解真實情況之力量追蹤控制性能。實驗結果顯示,主動慣質阻尼系統除了有效地降低結構加速度反應,更在力量追蹤控制擁有良好的性能。


    In this study, a novel active control device has been proposed, designed, and fabricated. This device is composed of a hydraulic actuator, and an inerter, namely active inerter damper (AID) which incorporates the characteristics of inerter into active control system. The AID has a special property that the force generated is proportional to the relative acceleration between the two ends of the inerter. By converting linear motion to rotational motion, the equivalent mass can be amplified significantly. Therefore, the inerter has smaller mass and volume than the conventional mass damper. Two force tracking control methods for AID have been proposed, synthesized and validated. The results show that the combination of displacement feedback and force control improves the force tracking control performance effectively and suppress the friction effect. Meanwhile, the displacement of actuator is able to re-center after excitation.
    Shake table testing has been considered as one of the most effective methods to investigate dynamic responses of buildings subjected to ground motions for earthquake engineering studies. However, shake table testing is not repeatable as long as specimens become inelastic. Therefore, real-time hybrid simulation (RTHS) has been adopted to evaluate the seismic control performance of an AID system. A 10-story shear building with an AID installed at the roof was utilized as a benchmark. The AID was physically tested while the shear building was numerical simulated. Metaheuristic optimization was applied to optimize the linear-quadratic regulator (LQR) for structural control. When the shear building was subjected to ground motion, the control force was calculated from LQR and treated as the desired force to be tracked by the AID. The achieved force of AID was measured and fed back to the numerical model until the entire RTHS ended. The results show that seismic response of the structure was mitigated effectively.
    In order to verify the effect of control-structure interaction (CSI) on the force tracking control of AID, shake table testing has been conducted. Experimental results demonstrate that the force tracking performance of the proposed control methods remained exceptional considering the CSI. In addition, the acceleration response of the specimen was effectively reduced.

    摘要 ii ABSTRACT iv 致謝 vi 目錄 viii 表目錄 xii 圖目錄 xvi 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究內容與架構 2 第二章 文獻回顧 3 2.1 主動質量阻尼器(AMD) 3 2.2 慣質(Inerter) 4 2.3 即時複合實驗 7 第三章 主動慣質阻尼器(AID) 9 3.1 AID機構設計 9 3.2 實驗架設 9 3.3 軟硬體介紹 10 3.4 AID控制方法 10 3.4.1 位移控制法 10 3.4.1.1 基於轉移函數之外迴路控制 11 3.4.1.2 基於物理模型之內迴路控制 11 3.4.2 力量控制法 12 3.5 AID系統識別與驅動裝置控制器設計 13 3.5.1 位移控制之系統識別 14 3.5.2 力量控制之系統識別 14 3.5.3 驅動裝置控制器設計 15 3.6 AID力量追蹤試驗 15 3.6.1 力量追蹤訊號 15 3.6.2 位移控制 16 3.6.2.1 基於轉移函數之外迴路控制 16 3.6.2.2 基於物理模型之內迴路控制 18 3.6.3 力量控制 19 3.6.4 位移與力量控制之比較 20 第四章 10層樓之即時複合實驗 23 4.1 RTHS之實驗流程與架構 23 4.2 10層樓之結構模型 23 4.3 結構減震控制律 24 4.4 含主動控制之10層樓結構數值模擬 25 4.5 RTHS之力量回饋 26 4.5.1 直接力量回饋 26 4.5.2 帶限制力量回饋 27 4.5.3 估測力量回饋 27 4.5.3.1 卡爾曼濾波器 27 4.5.3.2 慣質係數轉移函數 28 4.6 RTHS性能指標 29 4.7 數值模擬與RTHS之結果與分析 29 4.7.1 數值模擬 30 4.7.2 直接力量回饋 30 4.7.3 帶限制力量回饋 32 4.7.4 估測力量回饋 34 4.7.4.1 慣質係數轉移函數之比較 34 4.7.4.2 最佳估測力量回饋 36 4.8 各種力量回饋與各種控制方法之比較 39 4.8.1 各種控制方法之比較 39 4.8.2 各種力量回饋之比較 40 4.9 不同結構減震控制律之RTHS 41 4.9.1 結構減震控制率 41 4.9.2 不同結構減震控制律之數值模擬 41 4.9.3 RTHS之結果探討與分析 42 第五章 振動臺試驗 45 5.1 實驗架設 45 5.2 軟硬體介紹 45 5.3 系統識別 45 5.3.1 振動臺 45 5.3.2 AID 46 5.3.3 3層樓結構 47 5.4 結構數值模型 47 5.5 結構減震控制律 49 5.6 縮尺效應 49 5.7 實驗結果與分析 49 第六章 結論與建議 53 6.1 結論 53 6.2 建議 54 參考文獻 57

    [1] Saaed, T.E., Nikolakopoulos, G., Jonasson, J. E., Hedlund, H. (2015) “A state-of-the-art review of structural control systems” Journal of Vibration and Control, 21(5) :919-937.
    [2] Chung, L. L., Lin, R. C., Soong, T. T., and Reinhorn, A. M. (1989) “Experimental Study of Active Control for MDOF Seismic Structures” Journal of Engineering Mechanics, 115(8) :1609-1627.
    [3] Bryan J. S. (2019) “Metaheuristic Optimization of Weighting Matrices of LQR for Active Structural Control” 國立臺灣科技大學營建工程所碩士論文,陳沛清指導。
    [4] Dyke, S. J., Spencer, Jr, B. F., Quast, P., Kaspari, Jr, D. C., and Sain, M. K. (1996) “Implementation of An Active Mass Driver using Acceleration Feedback Control” Computer-Aided Civil and Infrastructure Engineering, 11(5): 305-323.
    [5] Nakata, N. (2010) “Acceleration trajectory tracking control for earthquake simulators” Engineering Structures, 32 :2229-2236
    [6] Chen, P. C., Lai, C. T., and Tsai, K. C. (2017) “A Control Framework for Uniaxial Shaking Tables Considering Tracking Performance and System Robustness” Structural Control and Health Monitoring, 24(11): e2015.
    [7] Cao, H, Reinhorn, A. M., and Soong, T. T. (1998) “Design of Active Mass Damper for A Tall TV Tower in Nanjing China, Engineering Structures” 20(3):134-143.
    [8] Yamamoto M., Aizawa S., Higashino M. and Toyama K. (2001) “Practical applications of active mass dampers with hydraulic actuator” Earthquake Engineering and Structural Dynamics, 30 :1697-1717.
    [9] Smith, M. C. (2002) “Synthesis of Mechanical Networks: The Inerter” IEEE Transactions on Automatic Control, 47(10):1648-1662.
    [10] Smith, M. C., and Wang, F. C. (2004) “Performance Benefits in Passive Vehicle Suspensions employing Inerters” Vehicle System Dynamics, 42(4): 235-257.
    [11] 徐茂盛(2005),慣質觀念之實現及在建築物減震之應用,國立台灣大學機械工程系碩士論文,王富正指導。
    [12] 林子謙(2007),慣質模型的實現,國立台灣大學機械工程系碩士論文,王富正指導。
    [13] 詹翔安(2008),機電懸吊系統之設計及應用,國立台灣大學機械工程系碩士論文,王富正指導。
    [14] Wang, F. C., Hong, M. F., and Lin, T. C. (2010) “Designing and testing a hydraulic inerter, Mechanical Engineering Science” 225(1) :1-16.
    [15] Marian, L., and Giaralis, A. (2017) “The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting” Smart Structures and Systems, 19(6) :665-678.
    [16] Den Hartog, J.P. (1956) “Mechanical Vibrations” New York, NY, USA, McGraw-Hill (4th ed.).
    [17] Giaralis, A., and Petrini, F. (2017) “Wind-Induced Vibration Mitigation in Tall Buildings Using the Tuned Mass-Damper-Inerter” Journal of Structural Engineering, 143(9) :04017127.
    [18] Li, C., and Cao, L. (2018) “High performance active tuned mass damper inerter for structures under the ground acceleration” Earthquakes and Structures, 16, No. 2 :149-163.
    [19] Hakuno, M., Masatoshi S., and Tsukasa H. (1969) “Dynamic destructive test of a cantilever beam, controlled by an analog-computer” Proceedings of the Japan society of civil engineers, Japan Society of Civil Engineers: 1-9.
    [20] Nakashima, M., Hiroto, K., and Eiji, T. (1992) “Development of real‐time pseudo dynamic testing” Earthquake Engineering & Structural Dynamics, 21(1) :79-92.
    [21] Chen, P. C., Tsai, K. C., and Lin, P. Y. (2014) “Real-time hybrid testing of a smart base isolation system” Earthquake Engineering & Structural Dynamics, 43(1) :139-158
    [22] Wang, J. T., Gui, Y., Zhu, F., Jin, F, & Zhou, M. X. (2016) “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper” Structural Control Health Monitoring, 23(7) :1015-1031.
    [23] Bhagwan, S., Kumar, A., Soni, J. S. (2016) “A Review on: PID Controller” International Journal on Recent Technologies in Mechanical and Electrical Engineering, 3(2) :17-22.
    [24] Amini, F., N.K. Hazaveh, and A.A. Rad. (2013) “Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers” Computer-Aided Civil and Infrastructure Engineering, 28(7): p. 542-557.
    [25] Spencer JR., B. F., Dyke, S. J. and Deoskar, H. S. (1998) “Benchmark Problems In Structural Control: Part Iðactive Mass Driver System” Earthquake Engineering and Structural Dynamics, 27 :1127-1139.
    [26] 簡楷益(2020),應用機器學習於結構主動控制律之設計與驗證,國立臺灣科技大學營建工程所碩士論文,陳沛清指導。
    [27] Chen, P. C., Chien K. Y. (2020) “Machine-Learning Based Optimal Seismic Control of Structure with Active Mass Damper” Appl. Sci., 10(15), 5342.
    [28] Nakata, N. (2012) “Effective force testing using a robust loop shaping controller” Earthquake Engineering & Structural Dynamics, 42(2) :261-275.

    QR CODE