簡易檢索 / 詳目顯示

研究生: 張郁賢
Yu-Hsien Chang
論文名稱: 氮化碳及氮化碳–氮化銅薄膜之雙極式電阻式記憶體
Bipolar Switching Resistive Memory Based on Carbon Nitride and Carbon Nitride-Copper Nitride Thin Films
指導教授: 周賢鎧
Shyan-Kay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
胡毅
Hu Yi
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 120
中文關鍵詞: 雙極式電阻式記憶體α-氮化碳氮化銅氮化鉭反應式共濺鍍氮空缺導電燈絲
外文關鍵詞: Bipolar resistance random-access memory (Bipolar RRAM), α-carbon nitride (α-C3N4), Copper (I) nitride (Cu3N), Tantalum nitride (TaN), Reactive co-sputtering, Nitrogen vacancy conductive filament
相關次數: 點閱:266下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究聚焦以 α-氮化碳 (Alpha carbon nitride, α-C3N4) 作為介電層,應用於雙極電阻式記憶體 (Bipolar Resistive Random Access Memory, Bipolar RRAM) 之上,形成 TaN / α-C3N4 / Al 元件之 M / I / M 結構,同時也在此基礎上製作了摻雜氮化銅 (Copper (I) nitride, Cu3N) 到 α-C3N4 之中,形成 Cu3N-α-C3N4 薄膜作為元件之介電層,並探討兩種元件之 RHRS / RLRS 比值以及電性掃描特性。
    純材料之 α-C3N4 介電層製備的 TaN / α-C3N4 / Al 元件之電極寬度尺寸分為 100 µm、150 µm、200 µm 以及 250 µm,TaN / α-C3N4 / Al 元件之 RHRS / RLRS 分別為 12.2、6.1、4.6、7.1 倍,其導電機構在 LRS 時為歐姆傳導機構 (Ohmic conduction),在 HRS 低電壓段的導電機構為歐姆傳導機構 (Ohmic conduction),HRS 高電壓段的導電機構屬於蕭特基發射機構 (Schottky emission)。此外,TaN / α-C3N4 / Al 元件之電阻切換機構為「氮空缺燈絲機構 (Nitrogen vacancy conductive filament)」。
    摻雜 Cu3N 之 Cu3N-α-C3N4 介電層製備的 Al / Cu3N-α-C3N4 / ITO 元件之 RHRS / RLRS 為 2.7 倍,其導電機構在 LRS 時為歐姆傳導機構 (Ohmic conduction),在 HRS 低電壓段的導電機構為歐姆傳導機構 (Ohmic conduction),HRS 高電壓段的導電機構屬於蕭特基發射機構 (Schottky emission)。此外,Al / Cu3N-α-C3N4 / ITO 元件之電阻切換機構為「氮空缺燈絲機構 (Nitrogen vacancy conductive filament)」。


    This research focuses on the use of α-carbon nitride (α-C3N4) as dielectric layer on Bipolar Resistive Random Access Memory (Bipolar RRAM) to form TaN / α-C3N4 / Al device as M / I / M structure. Further, copper nitride (Copper (I) nitride, Cu3N) was doped into α-C3N4 to form Cu3N-α-C3N4 thin film as the device dielectric layer. The RHRS / RLRS ratios and electrical scanning characteristics of two device were compared.
    The electrode widths of the TaN / α-C3N4 / Al devices made of pure α-C3N4 dielectric layer are 100 µm, 150 µm, 200 µm and 250 µm, and the RHRS / RLRS ratio of corresponding TaN / α-C3N4 / Al device are 12.2, 6.1, 4.6, and 7.1 times, respectively. Their conduction mechanism is ohmic conduction mechanism in LRS, the conduction mechanism in the HRS low-voltage part is ohmic conduction, and the conduction mechanism in the HRS high-voltage part belongs to Schottky emission. In addition, the resistance switching mechanism of TaN / α-C3N4 / Al device is " Nitrogen vacancy conductive filament".
    The RHRS / RLRS ratio of Al / Cu3N-α-C3N4 / ITO device prepared from the Cu3N-α-C3N4 dielectric layer is 2.7, and its conduction mechanism is ohmic conduction mechanism at LRS, the conduction mechanism in the HRS low-voltage part is ohmic conduction, and the conduction mechanism in the HRS high-voltage part belongs to Schottky emission. In addition, the resistance switching mechanism of Al / α-C3N4 / ITO device is " Nitrogen vacancy conductive filament".

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 X 表目錄 XV 第一章、前言 (Preface) 1 1.1 緒論 (Introduction) 1 1.2 研究動機 (Research motivation) 2 第二章、文獻回顧 (Literature review) 3 2.1 記憶體的簡介及種類 (Introduction and types of memory) 3 2.1.1 鐵電式記憶體介紹 (Ferroelectric Random Access Memory, FeRAM) 4 2.1.2 磁阻式記憶體介紹 (Magnetoresistive Random Access Memory, MRAM) 4 2.1.3 相變化式記憶體介紹 (Phase-Change Random Access Memory, PRAM) 5 2.1.4 電阻式記憶體介紹 (Resistive Random Access Memory, RRAM) 6 2.2 電阻切換機制 (Resistance Switching Mechanism) 9 2.2.1 導電燈絲機構 (Filamentary conducting path) 9 2.2.2 界面型導電機構 (Interface-type conducting path) 10 2.2.3 離子遷徙機構 (Ionic migration) 11 2.3 漏電流導電機構 (Leakage Current Conduction Mechanism) 13 2.3.1 歐姆接觸 (Ohmic contact) 13 2.3.2 普爾–法蘭克發射 (Poole-Frenkel emission, P-F emission) 15 2.3.3 空間電荷限制傳導 (Space-Charge-Limited Conduction, SCLC) 17 2.3.4 蕭特基發射 (Schottky emission) 20 2.3.5 傅勒–諾德翰穿隧 (Fowler-Nordheim Tunneling, FNT) 22 2.4 α-C3N4 之材料結構性質 (Material structural properties of α-C3N4) 24 2.5 Cu-α-C3N4 之材料結構性質 (Material structural properties of Cu-α-C3N4) 29 2.6 α-CNx ,CuxN 與 g-C3N4 之電阻切換研究 (Research on resistance switching of α-CNx , CuxN and g-C3N4) 34 2.7 研究目的 (Research purposes) 45 第三章、實驗儀器與實驗方法 (Experimental instruments and methods) 46 3.1 實驗材料與藥品規格 (Experimental materials and chemicals specifications) 46 3.2 實驗設備與分析儀器 (Laboratory equipment and analytical instruments) 48 3.3 實驗原理 (Experimental principle) 50 3.3.1 磁控式濺鍍系統 (Magnetron Sputtering system) 50 3.3.2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 51 3.3.3 X 光繞射分析儀 (X-ray Diffractometer, XRD) 52 3.3.4 四點探針 (Four-point probe) 53 3.3.5 紫外光-可見光譜分析儀 (UV-visible Spectrophotometer, UV-vis) 54 3.3.6 螢光光譜分析儀 (Photoluminescence Spectrometer, PL) 56 3.3.7 傅立葉轉換紅外光譜分析儀 (Fourier Transform Infrared Spectroscope, FTIR) 57 3.3.8 半導體電性量測分析儀 (Semiconductor Device Parameter Analyzer) 58 3.4 實驗步驟 (Experimental procedure) 60 3.4.1 實驗流程與分析 (Experimental procedure and analysis) 60 3.4.2 基板清洗 (Substrate cleaning) 62 3.4.3 α-C3N4 / Cu3N-α-C3N4 薄膜製備 (Preparation of α-C3N4 / Cu3N-α-C3N4 thin films) 62 3.4.4 以 α-C3N4 / Cu3N-α-C3N4 作為介電層的電阻式記憶體元件製備 (Fabrication of resistive memory devices using α-C3N4 / Cu3N-α-C3N4 as dielectric layer) 63 第四章、實驗結果與討論 (Experimental results and discussion) 67 4.1 α-C3N4 之基本結構性質 (Basic structural properties of α-C3N4) 67 4.1.1 α-C3N4 薄膜之 FE-SEM 表面及截面分析結果 (FE-SEM surface and cross-sectional analysis results of α-C3N4 thin films) 67 4.1.2 α-C3N4 薄膜之 EDS 成份分析結果 (EDS composition analysis results of α-C3N4 films) 68 4.1.3 α-C3N4 薄膜之 XRD 結構分析結果 (XRD structure analysis results of α-C3N4 thin films) 69 4.1.4 α-C3N4 薄膜之 FTIR 分析結果 (FTIR analysis results of α-C3N4 thin films) 70 4.1.5 α-C3N4 薄膜之 UV-visible 吸收限與能隙分析結果 (UV-visible absorption limit and energy gap analysis results of α-C3N4 thin films) 70 4.1.6 α-C3N4 薄膜之 PL 光致發光分析結果 (PL photoluminescence analysis results of α-C3N4 thin films) 72 4.1.7 α-C3N4 薄膜之四點探針導電度分析結果 (Four-point probe conductivity analysis results of α-C3N4 thin films) 72 4.2 Cu3N-α-C3N4 之基本結構性質 (Basic structural properties of Cu3N-α-C3N4) 74 4.2.1 Cu3N-α-C3N4 薄膜之 FE-SEM 表面及截面分析結果 (FE-SEM surface and cross-sectional analysis results of Cu3N-α-C3N4 thin films) 74 4.2.2 Cu3N-α-C3N4 薄膜之 EDS 成份分析結果 (EDS composition analysis results of Cu3N-α-C3N4 films) 75 4.2.3 Cu3N-α-C3N4 薄膜之 XRD 結構分析結果 (XRD structure analysis results of Cu3N-α-C3N4 thin films) 76 4.2.4 Cu3N-α-C3N4 薄膜之 FTIR 分析結果 (FTIR analysis results of Cu3N-α-C3N4 thin films) 77 4.2.5 Cu3N-α-C3N4 薄膜之 UV-visible 吸收限與能隙分析結果 (UV-visible absorption limit and energy gap analysis results of Cu3N-α-C3N4 thin films) 77 4.2.6 Cu3N-α-C3N4 薄膜之 PL 光致發光分析結果 (PL photoluminescence analysis results of Cu3N-α-C3N4 thin films) 79 4.2.7 Cu3N-α-C3N4 薄膜之四點探針導電度分析結果 (Four-point probe conductivity analysis results of Cu3N-α-C3N4 thin films) 79 4.3 TaN 電極層、Al 電極層之基本結構性質 (Basic structural properties of TaN electrode layer and Al electrode layer) 81 4.3.1 TaN 電極層之 FE-SEM 表面及截面分析結果 (FE-SEM surface and cross-sectional analysis results of TaN electrode layer) 81 4.3.2 TaN 電極層之 EDS 成份分析結果 (EDS composition analysis results of TaN electrode layer) 82 4.3.3 Al 電極層之 FE-SEM 表面及截面分析結果 (FE-SEM surface and cross-sectional analysis results of Al electrode layer) 83 4.3.4 TaN 電極層之四點探針導電度分析結果 (Four-point probe conductivity analysis results of TaN electrode layer) 84 4.3.5 Al 電極層之四點探針導電度分析結果 (Four-point probe conductivity analysis results of Al electrode layer) 84 4.4 TaN / α-C3N4 / Al 元件之電性分析 (Electrical analysis of TaN / α-C3N4 / Al device) 86 4.4.1 TaN / α-C3N4 / Al 電極線寬 100 µm 元件之 I-V 曲線量測 (I-V curve measurement of TaN / α-C3N4 / Al electrode line width 100 µm device) 86 4.4.2 TaN / α-C3N4 / Al 電極線寬 150 µm 元件之 I-V 曲線量測 (I-V curve measurement of TaN / α-C3N4 / Al electrode line width 150 µm device) 88 4.4.3 TaN / α-C3N4 / Al 電極線寬 200 µm 元件之 I-V 曲線量測 (I-V curve measurement of TaN / α-C3N4 / Al electrode line width 200 µm device) 90 4.4.4 TaN / α-C3N4 / Al 電極線寬 250 µm 元件之 I-V 曲線量測 (I-V curve measurement of TaN / α-C3N4 / Al electrode line width 250 µm device) 92 4.4.5 TaN / α-C3N4 / Al 元件之導電特性與電阻切換機構探討 (Discussion on conductivity characteristics and resistance switching mechanism of TaN / α-C3N4 / Al device) 94 4.5 Al / Cu3N-α-C3N4 / ITO 元件之電性分析 (Electrical analysis of Al / Cu3N-α-C3N4 / ITO device) 97 4.5.1 Al / Cu3N-α-C3N4 / ITO 電極孔洞直徑 150 µm 元件之 I-V 曲線量測 (I-V curve measurement of Al / Cu3N-α-C3N4 / ITO electrode hole diameter 150 µm) 97 4.5.2 Al / Cu3N-α-C3N4 / ITO 元件之電阻切換機構探討 (Discussion on resistance switching mechanism of Al / Cu3N-α-C3N4 / ITO device) 99 第五章、結論與未來展望 (Conclusion and future outlook) 101 5.1 結論 (Conclusion) 101 5.2 未來展望 (Future outlook) 102 參考文獻 (References) 103 附錄 (Appendix) 116

    [1] Y. Chen, "ReRAM: History, Status, and Future," IEEE Transactions on Electron Devices, Article vol. 67, no. 4, pp. 1420-1433, 2020, Art. no. 8961211.
    [2] S. Grossman, "End of the road for dual voltage flash memory," Electronic Engineering (London), Article vol. 71, no. 868, pp. 49-50, 1999.
    [3] G. H. Lee, S. Hwang, J. Yu, and H. Kim, "Architecture and process integration overview of 3d nand flash technologies," Applied Sciences (Switzerland), Review vol. 11, no. 15, 2021, Art. no. 6703.
    [4] G. Rajendran, W. Banerjee, A. Chattopadhyay, and M. M. S. Aly, "Application of Resistive Random Access Memory in Hardware Security: A Review," Advanced Electronic Materials, Review vol. 7, no. 12, 2021, Art. no. 2100536.
    [5] K. Humood, S. Saylan, B. Mohammad, and M. A. Jaoude, "A Low-Cost, Nanowatt, Millimeter-Scale Memristive-Vacuum Sensor," IEEE Sensors Journal, Article vol. 22, no.6, pp. 6080-6087, 2022.
    [6] Z. Wei, Kazunari Homma, Koji Katayama, Ken Kawai, Satoru Fujii, Yasuhisa Naitoh, Hisashi Shima, Hiroyuki Akinaga, Satoru Ito, and Shinichi Yoneda, "From memory to sensor: Ultralow power and high selectivity hydrogen sensor based on ReRAM technology," IEEE Transactions on Electron Devices, Conference Paper vol. 65, no. 11, pp. 5189-5194, 2018, Art. no. 8466039.
    [7] Q. Chen, Min Lin, Yichen Fang, Zongwei Wang, Yuchao Yang, Jintong Xu, Yimao Cai, and Ru Huang, "Integration of biocompatible organic resistive memory and photoresistor for wearable image sensing application," Science China Information Sciences, Article vol. 61, no. 6, 2018, Art. no. 060411.
    [8] J. Oh and S. M. Yoon, "Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage," ACS Applied Materials and Interfaces, Review vol. 13, no. 48, pp. 56777-56792, 2021.
    [9] N. A, Sivamangai NM, Rajesh S, NaveenKumar R, Nithya N, Kamalnath S, and Aswathy N, "Review on role of nanoscale HfO2 switching material in resistive random access memory device," Emergent Materials, Review vol. 5, no. 2, pp. 489-508, 2022.
    [10] J. L. Jiao, Qiu-Hong Gan, Shi Cheng, Ye Liao, Shao-Ying Ke, Wei Huang, Jian-Yuan Wang, Cheng Li, and Song-Yan Chen, "Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device," Chinese Physics B, Article vol. 30, no. 11, 2021, Art. no. 118701.
    [11] M. J. Yun, D. Lee, S. Kim, C. Wenger, and H. D. Kim, "A nonlinear resistive switching behaviors of Ni/HfO2/TiN memory structures for self-rectifying resistive switching memory," Materials Characterization, Article vol. 182, 2021, Art. no. 111578.
    [12] G. Han, Y. Chen, H. Liu, D. Wang, and R. Qiao, "Impacts of laox doping on the performance of ITO/Al2O3/ITO transparent rram devices," Electronics (Switzerland), Article vol. 10, no. 3, pp. 1-11, 2021, Art. no. 272.
    [13] E. A. Khera, H. Ullah, M. Imran, R. M. A. Khalil, F. Hussain, and H. Algadi, "Theoretical Investigation of CsBX3 (B = Pb, Sn; X = I, Br, Cl) Using Tran–Blaha Modified Becke–Johnson Approximation for Flexible Photoresponsive Memristors," Advanced Theory and Simulations, Article vol. 4, no. 7, 2021, Art. no. 2100011.
    [14] C. Mahata and S. Kim, "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons and Fractals, Article vol. 153, 2021, Art. no. 111518.
    [15] D. Petryk, Dmytro Petryk, Zoya Dyka, Eduardo Perez, Levgen Kabin, Jens Katzer, Jan Schäffner, and Peter Langendörfer, "Sensitivity of HfO2-based RRAM Cells to Laser Irradiation," Microprocessors and Microsystems, Article vol. 87, 2021, Art. no. 104376.
    [16] Q. Cao, Weiming Lü, X. Renshaw Wang, Xinwei Guan, Lan Wang, Shishen Yan, Tom Wu, and Xiaolin Wang, "Nonvolatile Multistates Memories for High-Density Data Storage," ACS Applied Materials and Interfaces, Article vol. 12, no. 38, pp. 42449-42471, 2020.
    [17] H. Zhang and G. Zhang, "REVIEW OF RESEARCH ON STORAGE DEVELOPMENT," Scalable Computing, Article vol. 22, no. 3, pp. 365-385, 2021.
    [18] A. Spessot and H. Oh, "1T-1C Dynamic Random Access Memory Status, Challenges, and Prospects," IEEE Transactions on Electron Devices, Article vol. 67, no. 4, pp. 1382-1393, 2020, Art. no. 8976234.
    [19] T. Endoh, H. Koike, S. Ikeda, T. Hanyu, and H. Ohno, "An Overview of Nonvolatile Emerging Memories-Spintronics for Working Memories," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Review vol. 6, no. 2, pp. 109-119, 2016, Art. no. 7458915.
    [20] G. Müller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, "Status and outlook of emerging nonvolatile memory technologies," in Technical Digest - International Electron Devices Meeting, IEDM, no. 8382495, pp. 567-570, 2004.
    [21] Z. Zhang, Zongwei Wang, Tuo Shi, Chong Bi, Feng Rao, Yimao Cai, Qi Liu, Huaqiang Wu, and Peng Zhou, "Memory materials and devices: From concept to application," InfoMat, Review vol. 2, no. 2, pp. 261-290, 2020.
    [22] H. Ishiwara, "Ferroelectric random access memories," Journal of Nanoscience and Nanotechnology, Review vol. 12, no. 10, pp. 7619-7627, 2012.
    [23] J. F. Scott and J. Gardner, "Ferroelectrics, multiferroics and artifacts: Lozenge-shaped hysteresis and things that go bump in the night," Materials Today, Review vol. 21, no. 5, pp. 553-562, 2018.
    [24] Y. Wang, K. Zhang, B. Wu, D. Zhang, H. Cai, and W. Zhao, "Magnetic Random-Access Memory-Based Approximate Computting: An overview," IEEE Nanotechnology Magazine, Review vol. 16, no. 1, pp. 25-32, 2022.
    [25] T. Na, S. H. Kang, and S. O. Jung, "STT-MRAM Sensing: A Review," IEEE Transactions on Circuits and Systems II: Express Briefs, Review vol. 68, no. 1, pp. 12-18, 2021, Art. no. 9270597.
    [26] S. Ikegawa, F. B. Mancoff, and S. Aggarwal, "Commercialization of MRAM-Historical and Future Perspective," in 2021 IEEE International Interconnect Technology Conference, IITC 2021, no. 21230513, 2021.
    [27] J. Garg and S. Wairya, "STT-MRAM A Universal Memory from Device to Circuit," in Lecture Notes in Electrical Engineering vol. 766, ed, 2022, pp. 673-681.
    [28] J. Wang, L. Wang, and J. Liu, "Overview of Phase-Change Materials Based Photonic Devices," IEEE Access, Article vol. 8, pp. 121211-121245, 2020, Art. no. 9133093.
    [29] Z. C. Liu and L. Wang, "Applications of phase change materials in electrical regime from conventional storage memory to novel neuromorphic computing," IEEE Access, Article vol. 8, pp. 76471-76499, 2020, Art. no. 9078803.
    [30] B. Liu, Tao Wei, Jing Hu, Wanfei Li, Yun Ling, Qianqian Liu, Miao Cheng, and Zhitang Song, "Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage," Chinese Physics B, Review vol. 30, no. 5, 2021, Art. no. 058504.
    [31] P. Fantini, "Phase change memory applications: The history, the present and the future," Journal of Physics D: Applied Physics, Review vol. 53, no. 28, 2020, Art. no. 283002.
    [32] N. Vasileiadis, Panagiotis Loukas, Panagiotis Karakolis, Vassilios Ioannou-Sougleridis, Pascal Normand, Vasileios Ntinas, Iosif-Angelos Fyrigos, Ioannis Karafyllidis, Georgios Ch. Sirakoulis, and Panagiotis Dimitrakis, "Multi-level resistance switching and random telegraph noise analysis of nitride based memristors," Chaos, Solitons and Fractals, Article vol. 153, 2021, Art. no. 111533.
    [33] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, Review vol. 11, no. 6, pp. 28-36, 2008.
    [34] D. Maldonado, F M Gómez-Campos, M B González, A M Roldán, F Jiménez-Molinos, F Campabadal, and J B Roldán, "Comprehensive study on unipolar RRAM charge conduction and stochastic features: A simulation approach," Journal of Physics D: Applied Physics, Article vol. 55, no. 15, 2022, Art. no. 155104.
    [35] H. Akinaga and H. Shima, "Resistive random access memory (ReRAM) based on metal oxides," Proceedings of the IEEE, Conference Paper vol. 98, no. 12, pp. 2237-2251, 2010, Art. no. 5607274.
    [36] D. J. Wouters, R. Waser, and M. Wuttig, "Phase-Change and Redox-Based Resistive Switching Memories," Proceedings of the IEEE, Review vol. 103, no. 8, pp. 1274-1288, 2015, Art. no. 7137622.
    [37] J. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, "Overview of emerging nonvolatile memory technologies," Nanoscale Research Letters, Article vol. 9, no. 1, pp. 1-33, 2014, Art. no. 526.
    [38] P. Sun, Nianduan Lu, Ling Li, Yingtao Li, Hong Wang, Hangbing Lv, Qi Liu, Shibing Long, Su Liu, and Ming Liu, "Thermal crosstalk in 3-dimensional RRAM crossbar array," Scientific Reports, Article vol. 5, 2015, Art. no. 13504.
    [39] O. Šuch, E. Linn, M. Klimo, P. Jančovič, M. Frátrik, and K. Fröhlich, "On passive permutation circuits," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Article vol. 5, no. 2, pp. 173-182, 2015, Art. no. 7101889.
    [40] H. Ahn, Keehoon Kang, Younggul Song, Woocheol Lee, Jae-Keun Kim, Junwoo Kim, Jonghoon Lee, Kyeong-Yoon Baek, Jiwon Shin, Hyungbin Lim, Yongjin Kim, Jae Sung Lee, and Takhee Lee, "Resistive Switching by Percolative Conducting Filaments in Organometal Perovskite Unipolar Memory Devices Analyzed Using Current Noise Spectra," Advanced Functional Materials, Article vol. 32, no. 4, 2022, Art. no. 2107727.
    [41] F. Pan, C. Chen, Z. S. Wang, Y. C. Yang, J. Yang, and F. Zeng, "Nonvolatile resistive switching memories-characteristics, mechanisms and challenges," Progress in Natural Science: Materials International, Article vol. 20, no. 1, pp. 1-15, 2010.
    [42] S. Brivio and S. Menzel, "Resistive switching memories," in Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications - Computational Memory, Deep Learning, and Spiking Neural Networks, 2020, pp. 17-61.
    [43] D. K. Rana and S. Basu, "Resistive memory device with piezoelectric and ferroelectric thin films by solution synthesis," in Chemical Solution Synthesis for Materials Design and Thin Film Device Applications, 2021, Elsevier. pp. 679-695.
    [44] T. Kang, Xiaoyu Chen, Jia Zhu, Yun Huang, Zhuojie Chen, Guanzhou Lin, Shengxiao Jin, and Wengang Wu, "A resistive device with electrolyte as active electrode," International Journal of Modern Physics B, Article vol. 34, no. 28, 2020, Art. no. 2050267.
    [45] P. Wang, Yin-Yin Wu, Jing Wu, Sheng Wang, Lan Yu, Qin-Yu Zhu, and Jie Dai, "Perylene carboxylate-modified titanium-oxide gel, a functional material with photoswitchable fluorescence properties," Journal of Materials Chemistry C, Article vol. 1, no. 47, pp. 7973-7978, 2013.
    [46] G. Vinuesa, Héctor García, Mireia B. González, Kristjan Kalam, Miguel Zabala, Aivar Tarre, Kaupo Kukli, Aile Tamm, Francesca Campabadal, Juan Jiménez, Helena Castán, and Salvador Dueñas, "Effect of Dielectric Thickness on Resistive Switching Polarity in TiN/Ti/HfO2/Pt Stacks," Electronics (Switzerland), Article vol. 11, no. 3, 2022, Art. no. 479.
    [47] W. C. Chen, S. Qin, Z. Yu, and H. S. P. Wong, "Reduced HfO Resistive Memory Variability by Inserting a Thin SnO as Oxygen Stopping Layer," IEEE Electron Device Letters, Article vol. 42, no. 12, pp. 1778-1781, 2021.
    [48] L. Tang, Zhou P., Chen Y. R., Chen L. Y., Lv H. B., Tang T. A., and Lin Y. Y., "Temperature and electrode-size dependences of the resistive switching characteristics of CuOx thin films," Journal of the Korean Physical Society, Article vol. 53, no. 4 PART 1, pp. 2283-2286, 2008.
    [49] M. K. Kim and J. S. Lee, "Design of Electrodeposited Bilayer Structures for Reliable Resistive Switching with Self-Compliance," ACS Applied Materials and Interfaces, Article vol. 8, no. 48, pp. 32918-32924, 2016.
    [50] O. P. Das and S. K. Pandey, "Effect of conducting filament radius on local temperature and activation power of ON-state ReRAM device," Semiconductor Science and Technology, Article vol. 36, no. 9, 2021, Art. no. 095039.
    [51] K. Yang, Liping Fu, Junhao Chen, Fangcong Wang, Lixue Tian, Xiaoqiang Song, Zewei Wu, and Yingtao Li, "Anatomy of resistive switching behavior in titanium oxide based RRAM device," Materials Science in Semiconductor Processing, Article vol. 143, 2022, Art. no. 106492.
    [52] M. Ismail, A. Hashmi, A. M. Rana, and S. Kim, "Eradicating negative-Set behavior of TiO2-based devices by inserting an oxygen vacancy rich zirconium oxide layer for data storage applications," Nanotechnology, Article vol. 31, no. 32, 2020, Art. no. 325201.
    [53] H. Xie, Y. Liu, and Y. Qi, "A ZnO-based resistive device for RRAM application," in 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, EDSSC 2019, pp. 1-2, no. 18864101, 2019.
    [54] U. I. Bature, Illani Mohd Nawi, Mohd Haris Md Khir, Furqan Zahoor, Abdullah Saleh Algamili, Saeed S Ba Hashwan, and Mohd Azman Zakariya, "Statistical Simulation of the Switching Mechanism in ZnO-Based RRAM Devices," Materials, Article vol. 15, no. 3, 2022, Art. no. 1205.
    [55] W. L. Huang, Y. Z. Lin, S. P. Chang, and S. J. Chang, "Investigation of conductive mechanism of amorphous IGO resistive random-access memory with different top electrode metal," Coatings, Article vol. 10, no. 5, 2020, Art. no. 504.
    [56] C. Ye, Jiaji Wu, Gang He, Jieqiong Zhang, Tengfei Deng, Pin He, and Hao Wang, "Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review," Journal of Materials Science and Technology, Article vol. 32, no. 1, pp. 1-11, 2016.
    [57] P. R. Mickel, A. J. Lohn, and M. J. Marinella, "Memristive switching: Physical mechanisms and applications," Modern Physics Letters B, Review vol. 28, no. 10, 2014, Art. no. 1430003.
    [58] A. Chen, "Electronic Effect Resistive Switching Memories," in Emerging Nanoelectronic Devices, vol. 9781118447741, 2015, pp. 162-180.
    [59] A. Chen, "Ionic memories: Status and challenges," in Proceedings - 2008 9th Annual Non-Volatile Memory Technology Symposium, NVMTS 2008, no. 10439975, pp. 1-5, 2008.
    [60] T. de Vrijer, David van Nijen, Harsh Parasramka, Paul A. Procel Moya, Yifeng Zhao, Olindo Isabella, and Arno H.M. Smets, "The fundamental operation mechanisms of nc-SiOx≥0:H based tunnel recombination junctions revealed," Solar Energy Materials and Solar Cells, Article vol. 236, 2022, Art. no. 111501.
    [61] Y. W. Huan, Shun-Ming Sun, Chen-Jie Gu, Wen-Jun Liu, Shi-Jin Ding, Hong-Yu Yu, Chang-Tai Xia, and David Wei Zhang, "Recent Advances in β-Ga2O3–Metal Contacts," Nanoscale Research Letters, Review vol. 13, 2018, Art. no. 246.
    [62] P. J. King, E. Arac, S. Ganti, K. S. K. Kwa, N. Ponon, and A. G. O'Neill, "Improving metal/semiconductor conductivity using AlOx interlayers on n-type and p-type Si," Applied Physics Letters, Article vol. 105, no. 5, 2014, Art. no. 052101.
    [63] N. Stavitski, M. J. H. Van Dal, R. A. M. Wolters, A. Y. Kovalgin, and J. Schmitz, "Specific contact resistance measurements of metal-semiconductor junctions," in IEEE International Conference on Microelectronic Test Structures, 2006, vol. 2006, pp. 13-17.
    [64] E. W. Lim and R. Ismail, "Conduction mechanism of valence change resistive switching memory: A survey," Electronics (Switzerland), Review vol. 4, no. 3, pp. 586-613, 2015.
    [65] M. A. Rafiq, "Carrier transport mechanisms in semiconductor nanostructures and devices," Journal of Semiconductors, Review vol. 39, no. 6, 2018, Art. no. 061002.
    [66] J. Furlan, "Tunnelling generation-recombination currents in a-Si junctions," Progress in Quantum Electronics, Review vol. 25, no. 2, pp. 55-96, 2001.
    [67] R. Ongaro and A. Pillonnet, "The problem of deriving the Field-Induced thermal emission in Poole-Frenkel theories," Radiation Effects and Defects in Solids, Article vol. 124, no. 3, pp. 289-300, 1992.
    [68] W. C. Johnson, "Electronic transport in insulating films," IEEE Transactions on Nuclear Science, Article vol. 19, no. 6, pp. 33-40, 1972.
    [69] W. R. Harrell and J. Frey, "Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films," Thin Solid Films, Article vol. 352, no. 1-2, pp. 195-204, 1999.
    [70] V. M. Le Corre, Elisabeth A. Duijnstee, Omar El Tambouli, James M. Ball, Henry J. Snaith, Jongchul Lim, and L. Jan Anton Koster, "Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements," ACS Energy Letters, Article vol. 6, no. 3, pp. 1087-1094, 2021.
    [71] J. Dacuña and A. Salleo, "Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility," Physical Review B - Condensed Matter and Materials Physics, Article vol. 84, no. 19, 2011, Art. no. 195209.
    [72] M. A. Lampert, "Simplified theory of space-charge-limited currents in an insulator with traps," Physical Review, Article vol. 103, no. 6, pp. 1648-1656, 1956.
    [73] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, Article vol. 3, no. 2, pp. 151-156, 1970, Art. no. 308.
    [74] R. J. Umstattd, C. G. Carr, C. L. Frenzen, J. W. Luginsland, and Y. Y. Lau, "A simple physical derivation of Child-Langmuir space-charge-limited emission using vacuum capacitance," American Journal of Physics, Article vol. 73, no. 2, pp. 160-163, 2005.
    [75] N. B. Kotadiya, P. W. M. Blom, and G. A. H. Wetzelaer, "Trap-free space-charge-limited hole transport in a fullerene derivative," Physical Review Applied, Article vol. 11, no. 2, 2019, Art. no. 024069.
    [76] Q. Li, L. Qiu, X. Wei, B. Dai, and H. Zeng, "Point contact resistive switching memory based on self-formed interface of Al/ITO," Scientific Reports, Article vol. 6, 2016, Art. no. 29347.
    [77] E. B. Hensley, "Thermionic emission constants and their interpretation," Journal of Applied Physics, Article vol. 32, no. 2, pp. 301-308, 1961.
    [78] H. Abdy, A. Aletayeb, M. Kolahdouz, and E. A. Soleimani, "Investigation of metal-nickel oxide contacts used for perovskite solar cell," AIP Advances, Article vol. 9, no. 1, 2019, Art. no. 015216.
    [79] M. A. Yeganeh, S. Rahmatollahpur, R. Sadighi-Bonabi, and R. Mamedov, "Dependency of barrier height and ideality factor on identically produced small Au/p-Si Schottky barrier diodes," Physica B: Condensed Matter, Article vol. 405, no. 16, pp. 3253-3258, 2010.
    [80] J. Nicholls, S. Dimitrijev, P. Tanner, and J. Han, "Description and Verification of the Fundamental Current Mechanisms in Silicon Carbide Schottky Barrier Diodes," Scientific Reports, Article vol. 9, no. 1, 2019, Art. no. 3754.
    [81] F. C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, Review vol. 2014, 2014, Art. no. 578168.
    [82] T. G. Lee, S. Y. Ovchinnikov, J. Sternberg, V. Chupryna, D. R. Schultz, and J. H. MacEk, "Quantum treatment of continuum electrons in the fields of moving charges," Physical Review A - Atomic, Molecular, and Optical Physics, Article vol. 76, no. 5, 2007, Art. no. 050701.
    [83] Q. Fan, C. Chai, Q. Wei, and Y. Yang, "Two novel C3N4 phases: Structural, mechanical and electronic properties," Materials, Article vol. 9, no. 6, 2016, Art. no. 427.
    [84] B. Molina and L. E. Sansores, "Electronic structure of six phases of C3N4. A theoretical approach," Modern Physics Letters B, Article vol. 13, no. 6-7, pp. 193-201, 1999.
    [85] S. Datta, Prashant Singh, Debnarayan Jana, Chhanda B. Chaudhuri, Manoj K. Harbola, Duane D. Johnson, and Abhijit Mookerjee, "Exploring the role of electronic structure on photo-catalytic behavior of carbon-nitride polymorphs," Carbon, Article vol. 168, pp. 125-134, 2020.
    [86] N. Nakayama, Yasuaki Tsuchiya, Satoru Tamada, Kouji Kosuge, Shinji Nagata, Katsumi Takahiro, and Sadae Yamaguchi, "Structural properties of amorphous carbon nitride films prepared by reactive rf-magnetron sputtering," Japanese Journal of Applied Physics, Article vol. 32, no. 10 A, pp. 1465-1468, 1993.
    [87] E. Cappelli, S. Orlando, D.M. Trucchi, A. Bellucci, V. Valentini, A. Mezzi, and S.Kaciulis, "Carbon nitride films by RF plasma assisted PLD: Spectroscopic and electronic analysis," Applied Surface Science, Conference Paper vol. 257, no. 12, pp. 5175-5180, 2011.
    [88] X. C. Xiao, W. H. Jiang, L. X. Song, J. F. Tian, and X. F. Hu, "Thermoanalysis and XRD study of crystallization behaviors of amorphous carbon nitride," Diamond and Related Materials, Article vol. 9, no. 9, pp. 1782-1785, 2000.
    [89] G. Wu, S. S. Thind, J. Wen, K. Yan, and A. Chen, "A novel nanoporous α-C3N4 photocatalyst with superior high visible light activity," Applied Catalysis B: Environmental, Article vol. 142-143, pp. 590-597, 2013.
    [90] M. S. Azami, K. Ismail, M. A. M. Ishak, A. Zuliahani, S. R. Hamzah, and W. I. Nawawi, "Formation of an amorphous carbon nitride/titania composite for photocatalytic degradation of RR4 dye," Journal of Water Process Engineering, Article vol. 35, 2020, Art. no. 101209.
    [91] A. Shahzeydi, M. Ghiaci, H. Farrokhpour, A. Shahvar, M. Sun, and M. Saraji, "Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane," Chemical Engineering Journal, Article vol. 370, pp. 1310-1321, 2019.
    [92] H. Chen, Fei Zhuge, Bing Fu, Jun Li, Jun Wang, Weigao Wang, Qin Wang, Le Li, Fagen Li, Haolei Zhang, Lingyan Liang, Hao Luo, Mei Wang, Junhua Gao, Hongtao Cao, Hong Zhang, and Zhicheng Li, "Forming-free resistive switching in a nanoporous nitrogen-doped carbon thin film with ready-made metal nanofilaments," Carbon, Letter vol. 76, pp. 459-463, 2014.
    [93] Q. Zhou, Qian Lu, Yongning Zhou, Yin Yang, Xiaoqin Du, Xin Zhang, and Xiaojing Wu, "Influences of preparation methods on bipolar switching properties in copper nitride films," Surface and Coatings Technology, Article vol. 229, pp. 135-139, 2013.
    [94] W. Zhu, X. Zhang, X. Fu, Y. Zhou, S. Luo, and X. Wu, "Resistive-switching behavior and mechanism in copper-nitride thin films prepared by DC magnetron sputtering," Physica Status Solidi (A) Applications and Materials Science, Article vol. 209, no. 10, pp. 1996-2001, 2012.
    [95] V. K. Perla, S. K. Ghosh, P. Kumar, S. C. Ray, and K. Mallick, "Carbon nitride supported silver nanoparticles: a potential system for non-volatile memory application with high ON–OFF ratio," Journal of Materials Science: Materials in Electronics, Article 2019.
    [96] A. Bogaerts, "The glow discharge: An exciting plasma!," Journal of Analytical Atomic Spectrometry, Article vol. 14, no. 9, pp. 1375-1384, 1999.
    [97] T. L. Hayes and R. F. Pease, "The scanning electron microscope: principles and applications in biology and medicine," Advances in biological and medical physics, Review vol. 12, pp. 85-137, 1968.
    [98] A. Pandey, S. Dalal, S. Dutta, and A. Dixit, "Structural characterization of polycrystalline thin films by X-ray diffraction techniques," Journal of Materials Science: Materials in Electronics, Review vol. 32, no. 2, pp. 1341-1368, 2021.
    [99] M. Sain, S. Ummartyotin, J. Juntaro, C. Wu, and H. Manuspiya, "Deposition of PEDOT: PSS nanoparticles as a conductive microlayer anode in OLEDs device by desktop inkjet printer," Journal of Nanomaterials, Article vol. 2011, 2011, Art. no. 606714.
    [100] S. Takabayashi, Keishi Okamoto, Kunihiko Motomitsu, Akira Terayama, Tatsuyuki Nakatani, Hiroyuki Sakaue, Hitoshi Suzuki, and Takayuki Takahagi, "New method to calibrate binding energy using Au nanocolloids in X-ray photoelectron analysis of diamondlike carbon films with different electrical resistivities," Applied Surface Science, Article vol. 254, no. 9, pp. 2666-2670, 2008.
    [101] F. S. Rocha, A. J. Gomes, C. N. Lunardi, S. Kaliaguine, and G. S. Patience, "Experimental methods in chemical engineering: Ultraviolet visible spectroscopy—UV-Vis," Canadian Journal of Chemical Engineering, Article vol. 96, no. 12, pp. 2512-2517, 2018.
    [102] S. K. Najaf Abadi, S. I. Hosseini, M. Momeni, and H. Khaksaran, "Studying the effects of plasma produced species on the optical characteristics and bonding structure of diamond-like carbon films deposited by direct current unbalanced magnetron sputtering," Materials Chemistry and Physics, Article vol. 229, pp. 348-354, 2019.
    [103] Ö. D. Coşkun and T. Zerrin, "Optical, structural and bonding properties of diamond-like amorphous carbon films deposited by DC magnetron sputtering," Diamond and Related Materials, Article vol. 56, pp. 29-35, 2015, Art. no. 6400.
    [104] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, "Band-gap tailoring of ZnO by means of heavy Al doping," Physical Review B, Article vol. 37, no. 17, pp. 10244-10248, 1988.
    [105] A. J. Gomes, C. N. Lunardi, F. S. Rocha, and G. S. Patience, "Experimental methods in chemical engineering: Fluorescence emission spectroscopy," Canadian Journal of Chemical Engineering, Review vol. 97, no. 8, pp. 2168-2175, 2019.
    [106] J. J. A. Lozeman, P. Führer, W. Olthuis, and M. Odijk, "Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques," Analyst, Review vol. 145, no. 7, pp. 2482-2509, 2020.

    QR CODE