簡易檢索 / 詳目顯示

研究生: 劉逸芩
Yi-Chin Liou
論文名稱: 無鉛銲料與銅鎳矽鎂合金(C7025)液/固界面反應之研究
Liquid-Solid Interfacial Reactions between Lead-free Solders and Cu-Ni-Si-Mg Alloy(C7025)
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 吳子嘉
Tzu-Chia Wu
陳志銘
Chih-Ming Chen
梁鍵隴
Chien-Lung Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: C7025 合金液/固界面反應無鉛銲料導線架材料
外文關鍵詞: C7025 alloy, lead-free solder, liquid/solid interface reaction, lead frame material
相關次數: 點閱:214下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在電子組裝行業中,我們常常使用銅作為主要金屬材料。本研究通過向銅中添加微量的鎳、矽和鎂元素,形成了Cu-3.0 wt%Ni-0.65 wt%Si-0.15 wt%Mg(C7025)銅鎳矽鎂合金。此合金具有較高的強度、良好的折彎特性、耐熱性以及優異的耐應力和腐蝕特性,廣泛應用於電器端子、汽車端子、導線架和IC插拔元件等領域。然而,C7025在導線架領域被廣泛應用,但尚未有學者探討添加微量鎳、矽和鎂元素形成的C7025銅鎳矽鎂合金與無鉛銲料之間的界面反應。因此,本研究旨在研究其液固界面反應,並探討其作為導線架材料的適用性。
目前,最常用的無鉛銲料是以純錫為基礎,並添加微量的銅、銀、鋅等元素的合金銲料。本研究選擇了三種無鉛銲料:Sn、Sn-3.0wt.%Ag-0.5wt.%Cu和Sn-0.7wt.%Cu,並以液態/固態反應偶的形式,在240、255和270oC的反應溫度下,對反應時間為0.5至20小時的界面反應進行研究,並利用掃描電子顯微鏡結合掃描電子顯微鏡/能量分散光譜儀深入研究其界面反應。
研究結果顯示,在240oC的反應溫度下,反應時間為0.5-5小時時,Sn/C7025反應偶界面僅生成扇貝狀(Cu,Ni6Sn5相,而Cu3Sn相僅會在240oC反應10小時、255oC反應10小時和270oC反應5小時後使用掃描電子顯微鏡觀察到。值得注意的是,在SAC/C7025和SC/C7025反應偶中,Cu3Sn相在270oC反應2小時後就會使用掃描電子顯微鏡觀察到。隨著時間和溫度的增加,介金屬相的厚度也會逐漸增加。其中,在反應20小時時,Cu3Sn相仍不明顯,這是因為C7025中的Ni原子促進了Cu6Sn5的成核,而抑制了Cu3Sn相的生長。銲點推球測試結果顯示,隨著溫度的升高,脆性逐漸增加。較高的溫度有助於形成規則的晶粒分佈和IMC層,但過高的溫度可能導致脆性增加降低剪切強度。在本研究中,這三個系統的介金屬相厚度與反應時間的平方根呈線性關係,反應機制主要受擴散控制。本研究所使用之C7025反應偶所抑制空孔的生成以及其機械性質強度並不明顯,因此在導線架之應用較無特別突出。


In the electronic assembly industry, copper is commonly used as the primary metal material. In this study, a Cu-3.0 wt%Ni-0.65 wt%Si-0.15 wt%Mg (C7025, copper-nickel-silicon-magnesium alloy) was developed by adding trace amounts of nickel, silicon, and magnesium to copper. This alloy exhibits high strength, good bending characteristics, heat resistance, as well as excellent stress and corrosion resistance, making it widely used in areas such as electrical terminals, automotive terminals, wire frames, and IC interconnect components. However, while C7025 is extensively utilized in the wire frame field, there has been no investigation on the interface reactions between the C7025 copper-nickel-silicon-magnesium alloy and lead-free solders. Therefore, this study aims to explore the liquid-solid interface reactions and assess the suitability of this alloy as a wire frame material.
Currently, the most commonly used lead-free solder is tin-based with the addition of trace amounts of copper, silver, zinc, and other elements. Three types of lead-free solders were selected for this study: Sn, Sn-3.0 wt%Ag-0.5 wt%Cu, and Sn-0.7 wt%Cu. The interface reactions were studied using liquid/solid reaction couples at reaction temperatures of 240°C, 255°C, and 270°C, with reaction times ranging from 0.5 to 20 hours. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopy was employed to investigate the interface reactions in depth.
The results revealed that at a reaction temperature of 240°C and a reaction time of 0.5-5 hours, only a scallop-shaped (Cu,Ni)6Sn5 phase was formed at the Sn/C7025 reaction couple interface. The Cu3Sn phase was observed using scanning electron microscopy only after reaction times of 10 hours at 240°C, 10 hours at 255°C, and 5 hours at 270°C. It is noteworthy that the Cu3Sn phase could be observed after 2 hours of reaction at 270°C in the SAC/C7025 and SC/C7025 reaction couples. The thickness of the intermetallic compound (IMC) layer gradually increased with time and temperature. However, even after 20 hours of reaction, the Cu3Sn phase was not prominent, attributed to the Ni atoms in C7025 promoting the nucleation of Cu6Sn5 and inhibiting the growth of Cu3Sn. The ball shear test results showed that with increasing temperature, brittleness gradually increased. Higher temperatures facilitated the formation of a regular grain distribution and IMC layer, but excessively high temperatures could lead to increased brittleness and decreased shear strength. In this study, the thickness of the intermetallic phases in all three systems showed a linear relationship with the square root of reaction time, suggesting a diffusion-controlled reaction mechanism. The C7025 reaction couple used in this study did not show significant suppression of void formation or notable enhancement in mechanical properties, suggesting a limited advantage in wire harness applications.

摘要 I Abstract II 誌謝 IV 圖目錄 VIII 表目錄 XII 第一章、前言 1 第二章、文獻回顧 3 2-1電子構裝技術 3 2-1.1 電子構裝簡介 3 2-1.2導線架技術與材料 5 2-2 無鉛銲料之發展 7 2-2.1 純錫(Sn) 8 2-2.2 錫-銀-銅(Sn-Ag-Cu) 9 2-2.3 錫-銅(Sn-Cu) 11 2-3 界面反應動力學 12 2-3-1界面反應理論 12 2-3.2 擴散理論 14 2-3.3 Kirkendall Void 17 2-4晶粒熟化剝離機制 19 2-5 界面反應相關文獻 21 2-5.1 Sn/Cu 界面反應 21 2-5.2 Sn-3.0Ag-0.5Cu/Cu 界面反應 23 2-5.3 Sn-0.7Cu/Cu 界面反應 25 2-6機械性質測試 27 2-6.1 剪應力相關文獻 28 第三章、實驗方法 29 3-1 C7025 基材製備 29 3-2 銲料製備 29 3-3 反應偶製備 29 3-4 金相處理 30 3-5 界面觀察與分析 30 3-6 機械性質分析 32 3-6.1錫球製備 32 3-6.2試片製備 33 3-6.3 推球試驗 34 第四章、結果與討論 36 4-1純Sn銲料與C7025基材反應偶之界面反應 36 4-1.1 Sn/C7025 反應偶在 240 oC 之界面反應 36 4-1.2 Sn/C7025反應偶在255oC之界面反應 40 4-1.3 Sn/C7025反應偶在270oC之界面反應 42 4-2 Sn-3.0Ag-0.5Cu銲料與C7025基材反應偶之界面反應 50 4-2.1 Sn-3.0Ag-0.5Cu/C7025 反應偶在240oC之界面反應 50 4-2.2 Sn-3.0Ag-0.5Cu/C7025反應偶在255 oC之界面反應 52 4-2.3 3 Sn-3.0Ag-0.5Cu/C7025 反應偶在270oC之界面反應 54 4-3 Sn-0.7Cu銲料與C7025基材反應偶之界面反應 61 4-3.1 Sn-0.7Cu/C7025反應偶在240 oC之界面反應 61 4-3.2 Sn-0.7Cu/C7025反應偶在255 oC之界面反應 63 4-3.3Sn-0.7Cu/C7025反應偶在270 oC之界面反應 65 4-4 反應偶之界面反應動力學 71 4-5 Sn-3.0Ag-0.5Cu 銲料與C7025基材反應偶接點之機械性質 75 第五章、結論 78 第六章、參考文獻 80

[1] H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen, and K.N. Tu, Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper, Science, 336 (2012) 1007-1010.
[2] N. Kumar and A. Maurya, Development of lead free solder for electronic components based on thermal analysis, Materials Today: Proceedings, 62 (2022) 2163-2167.
[3] E.-D. 96/EC, WEEE Regulations, ( 2002)
[4] R. Regulations, RoHS Regulations, ( 2002)
[5] A. Rahn, The Basics of Soldering. 1993, John Wiely & Sons: New York.
[6] C. Dong, T. Guo, H. Ma, H. Ma, and Y. Wang, Effect of solder composition on the growth behavior of interfacial compounds on (001) Cu and polycrystalline Cu during aging, Materials Characterization, 194 (2022) 112380.
[7] K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability, Journal of Applied Physics, 97 (2004) 024508.
[8] T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Impurity and alloying effects on interfacial reaction layers in Pb-free soldering, Materials Science and Engineering: R: Reports, 68 (2010) 1-38.
[9] 張景勛, 無鉛銲料與銅-鈹合金(合金25)界面反應之研究. 2018, 國立臺灣科技大學材料科學與工程系: 台北市.
[10] 蔡子揚, Sn-0.7 Cu合金與C194 和Alloy 25基材界面反應之研究. 2021, 國立臺灣科技大學材料科學與工程系: 台北市.
[11] 溫俊, 無鉛銲錫與C194基材的界面反應. 2021, 國立臺灣科技大學材料科學與工程系: 台北市.
[12] D.P. Seraphim, R. Lasky, and C.Y. Li, Principles of Electronic Packaging, McGraw-Hill, 1989.
[13] 陳信文‧陳立軒‧林永森‧陳志銘, 電子構裝技術與材料, 高立出版, 2004.
[14] J.H. Lau, C.P. Wong, W. Nakayama, and J.L. Prince. Electronic Packaging: Design, Materials, Process, and Reliability. 1998.
[15] E.J. Rymaszewski, R.R. Tummala, and T. Watari, Microelectronics Packaging-An Overview, in: R.R. Tummala, E.J. Rymaszewski (Eds.), Microelectronics Packaging Handbook: Semiconductor Packaging, Springer US, Boston, MA, 1997, pp. 3-128.
[16] J.H. Lau, C.P. Wong, J. Prince, and W. Nakayama, Electronic Packaging: Design, Materials, Process, and Reliability, McGraw-Hill, 1998.
[17] 林定皓, 電子構裝技術概述, 台灣電路板協會, 2010.
[18] R. Monzen and C. Watanabe, Microstructure and mechanical properties of Cu-Ni-Si alloys, Materials Science and Engineering: A, 483-484 (2008) 117-119.
[19] J.N.M.M. Corporation, E.M. Group, F.M. Division, and R.F.P. Dept., Technical Data-High Performance Copper Alloy C7025. 2015.
[20] D. Goval, H. Azimi, C. Kim Poh, and L. Mirng-Ji. Reliability of high aspect ratio plated through holes (PTH) for advanced printed circuit board (PCB) packages. in 1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual. 1997.
[21] P.D. Sonawane, V.K. Bupesh Raja, and M. Gupta, Mechanical properties and corrosion analysis of lead-free Sn-0.7Cu solder CSI joints on Cu substrate, Materials Today: Proceedings, 46 (2021) 1101-1105.
[22] H. Ma and J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging, Journal of Materials Science, 44 (2009) 1141-1158.
[23] W.J. Plumbridge, Recent Observations on Tin Pest Formation in Solder Alloys, Journal of Electronic Materials, 37 (2008) 218-223.
[24] W. Peng, An investigation of Sn pest in pure Sn and Sn-based solders, Microelectronics Reliability, 49 (2009) 86-91.
[25] N. Jain, X. Wang, P. Jagtap, A. Bower, and E. Chason, Analysis of Pressure-Induced Whisker Nucleation and Growth in Thin Sn Films, Journal of Electronic Materials, 50 (2021) 6639-6653.
[26] C. Hang, J. He, Z. Zhang, H. Chen, and M. Li, Low Temperature Bonding by Infiltrating Sn3.5Ag Solder into Porous Ag Sheet for High Temperature Die Attachment in Power Device Packaging, Scientific Reports, 8 (2018)
[27] K.S. Kim, S.H. Huh, and K. Suganuma, Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints, Journal of Alloys and Compounds, 352 (2003) 226-236.
[28] S. Fürtauer, D. Li, D. Cupid, and H. Flandorfer, The Cu-Sn phase diagram, Part I: New experimental results, Intermetallics, 34 (2013) 142-147.
[29] Y. Kariya, T. Hosoi, S. Terashima, M. Tanaka, and M. Otsuka, Effect of silver content on the shear fatigue properties of Sn-Ag-Cu flip-chip interconnects, Journal of Electronic Materials, 33 (2004) 321-328.
[30] H.Y. Lu, H. Balkan, and K.Y. Simon, Solid-liquid reactions: The effect of Cu content on Sn-Ag-Cu interconnects, JOM, 57 (2005) 30-35.
[31] D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, High-Reliability Low-Ag-Content Sn-Ag-Cu Solder Jointsfor Electronics Applications, Journal of Electronic Materials, 41 (2012) 2631-2658.
[32] A. El-Daly, A. Azab, M. Abdo, and M. Eid, Viscoplastic characterization and mechanical strength of novel Sn-1.7Ag-0.7Cu lead-free solder alloys with microalloying of Te and Co, Journal of Materials Science: Materials in Electronics, 30 (2019) 12937-12949.
[33] K. Nogita, Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys, Intermetallics, 18 (2010) 145-149.
[34] M. Abtew and G. Selvaduray, Lead-free Solders in Microelectronics, Materials Science and Engineering: R: Reports, 27 (2000) 95-141.
[35] H. Nishikawa, J.Y. Piao, and T. Takemoto, Interfacial reaction between Sn-0.7Cu (-Ni) solder and Cu substrate, Journal of Electronic Materials, 35 (2006) 1127-1132.
[36] M. Schaefer, R.A. Fournelle, and J. Liang, Theory for intermetallic phase growth between cu and liquid Sn-Pb solder based on grain boundary diffusion control, Journal of Electronic Materials, 27 (1998) 1167-1176.
[37] 曾堉, 金屬基材與介金屬相在無鉛銲料中溶解現象的探討. 2006, 國立臺灣科技大學化學工程系: 台北市.
[38] X. Tu, D. Yi, J. Wu, and B. Wang, Influence of Ce addition on Sn-3.0Ag-0.5Cu solder joints: Thermal behavior, microstructure and mechanical properties, Journal of Alloys and Compounds, 698 (2017) 317-328.
[39] S.-S. Chee and J.-H. Lee, Fabrication of Cu-Ni mixed phase layer using DC electroplating and suppression of Kirkendall voids in Sn-Ag-Cu solder joints, Electronic Materials Letters, 10 (2014) 637-644.
[40] T. Laurila, V. Vuorinen, and J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Materials Science and Engineering: R: Reports, 49 (2005) 1-60.
[41] H.-K. Cheng, C.-W. Huang, H. Lee, Y.-L. Wang, T.-F. Liu, and C.-M. Chen, Interfacial reactions between Cu and SnAgCu solder doped with minor Ni, Journal of Alloys and Compounds, 622 (2015) 529-534.
[42] J. Chen, J. Yang, Y. Zhang, Z. Yu, and P. Zhang, Effect of substrates on the formation of Kirkendall voids in Sn/Cu joints, Welding in the World, 63 (2019) 751-757.
[43] Y.W. Wang, Y.W. Lin, C.T. Tu, and C.R. Kao, Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu, Journal of Alloys and Compounds, 478 (2009) 121-127.
[44] J. Wang, J. Chen, L. Zhang, Z. Zhang, Y. Han, X. Hu, H. Lu, and S. Zhang, Forming mechanism and growth of Kirkendall voids of Sn/Cu joints for electronic packaging: A recent review, Journal of Advanced Joining Processes, 6 (2022) 100125.
[45] P.-F. Chan, H. Lee, S.-I. Wen, M.-C. Hung, C.-M. Chen, and W.-P. Dow, Effect of Copper Grain Size on the Interfacial Microstructure of a Sn/Cu Joint, ACS Applied Electronic Materials, 2 (2020) 464-472.
[46] H.K. Kim and K.N. Tu, Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening, Physical Review B, 53 (1996) 16027-16034.
[47] 王信介, 自生反應阻障層Cu-Ni-Sn化合物在覆晶式封裝之研究. 2003, 國立中央大學化學工程與材料工程研究所: 桃園縣.
[48] 王信介, 覆晶凸塊封裝之兩界面反應交互作用研究. 2006, 國立中央大學化學工程與材料工程研究所: 桃園縣.
[49] C. Sanabria, A new understanding of the heat treatment of Nb3Sn superconducting wires, 2017.
[50] X. Hu and Z. Ke, Growth behavior of interfacial Cu-Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging, Journal of Materials Science: Materials in Electronics, 25 (2014) 936-945.
[51] K.N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, 21 (1973) 347-354.
[52] N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, and W. Dong, Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient, Scientific Reports, 5 (2015) 13491.
[53] W.-m. Tang, A.-q. He, Q. Liu, and D.G. Ivey, Solid state interfacial reactions in electrodeposited Cu/Sn couples, Transactions of Nonferrous Metals Society of China, 20 (2010) 90-96.
[54] S. Li and Y.-f. Yan, Intermetallic growth study at Sn-3.0Ag-0.5Cu/Cu solder joint interface during different thermal conditions, Journal of Materials Science: Materials in Electronics, 26 (2015) 9470-9477.
[55] J.-W. Yoon, B.-I. Noh, B.-K. Kim, C.-C. Shur, and S.-B. Jung, Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints, Journal of Alloys and Compounds, 486 (2009) 142-147.
[56] B. Guo, A. Kunwar, H. Ma, J. Liu, S. Li, J. Sun, N. Zhao, and H. Ma. Effects of soldering temperature and cooling rate on the as-soldered microstructures of intermetallic compounds in Sn-0.7Cu/Cu joint. in 2015 16th International Conference on Electronic Packaging Technology (ICEPT). 2015.
[57] M.F.A.a. V.L.Acoff, J,Master.RES., 33 (2004) 1452.
[58] D. Mu, H. Yasuda, H. Huang, and K. Nogita, Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu, Journal of Alloys and Compounds, 536 (2012) 38-46.
[59] G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, The influence of Ni and Zn additions on microstructure and phase transformations in Sn-0.7Cu/Cu solder joints, Acta Materialia, 83 (2015) 357-371.
[60] T. Maeshima, H. Ikehata, K. Terui, and Y. Sakamoto, Effect of Ni to the Cu substrate on the interfacial reaction with Sn-Cu solder, Materials & Design, 103 (2016) 106-113.
[61] G. Zeng, S.D. McDonald, D. Mu, Y. Terada, H. Yasuda, Q. Gu, and K. Nogita, Ni segregation in the interfacial (Cu,Ni)6Sn5 intermetallic layer of Sn-0.7Cu-0.05Ni/Cu ball grid array (BGA) joints, Intermetallics, 54 (2014) 20-27.
[62] J.C. Suhling, H.S. Gale, R. Johnson, M. Islam, T. Shete, P. Lall, M. Bozack, J.L. Evans, P. Seto, T. Gupta, and J.R. Thompson, Thermal cycling reliability of lead free solders for automotive applications, 2004.
[63] M. Kuczynska, Y. Maniar, U. Becker, and S. Weihe, Effect of shear and tensile-dominant cyclic loading on failure in SnAgCu solder, Microelectronics Reliability, 120 (2021) 114101.
[64] A. F1269-89, Test Methodd for Destructive Shear Testing of Ball Bonds, American Society for Testing of Materials, 1995.
[65] S. Zhang, R. Duan, S. Xu, P. Xue, C. Wang, J. Chen, K.-W. Paik, and P. He, Shear performance and accelerated reliability of solder interconnects for fan-out wafer-level package, Journal of Advanced Joining Processes, 5 (2022) 100076.
[66] L. Yang, S. Fenglian, and Y. Miaosen. Shear strength and brittle failure of low-Ag SAC-Bi-Ni solder joints during ball shear test. in 2013 14th International Conference on Electronic Packaging Technology. 2013.
[67] J.-W. Yoon, B.-I. Noh, and S.-B. Jung, Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint, Journal of Electronic Materials, 40 (2011) 1950-1955.
[68] H. Okamoto, Ni-Sn (Nickel-Tin), Journal of Phase Equilibria and Diffusion, 29 (2008) 297-298.
[69] S. Tay, A.S.M.A. Haseeb, M. Johan, P.R. Munroe, and M. Quadir, Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn-3.8Ag-0.7Cu lead-free solder and copper substrate, Intermetallics, 33 (2013) 8-15.
[70] J.F. Li, P.A. Agyakwa, and C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process, Acta Materialia, 59 (2011) 1198-1211.
[71] J.Y. Kim, Y.C. Sohn, and J. Yu, Effect of Cu content on the mechanical reliability of Ni/Sn-3.5Ag system, Journal of Materials Research, 22 (2007) 770-776.
[72] I. Izwan, M. Salleh, M.M.A.B. Abdullah, P. Narayanan, J. Chaiprapa, R. Mohd Said, S. Yoriya, and K. Nogita, The Effect of Ni and Bi Additions on the Solderability of Sn-0.7Cu Solder Coatings, Journal of Electronic Materials, 49 (2019)
[73] T. An and F. Qin, Intergranular cracking simulation of the intermetallic compound layer in solder joints, Computational Materials Science, 79 (2013) 1-14.
[74] S.-k. Lin, K.-d. Chen, H. Chen, W.-k. Liou, and Y.-w. Yen, Abnormal spalling phenomena in the Sn-0.7Cu/Au/Ni/SUS304 interfacial reactions, Journal of Materials Research, 25 (2010) 2278-2286.
[75] H. Kannojia and P. Dixit, A review of intermetallic compound growth and void formation in electrodeposited Cu-Sn Layers for microsystems packaging, Journal of Materials Science: Materials in Electronics, 32 (2021)
[76] H. Li, L. Qu, H. Zhao, N. Zhao, and H. Ma. Mechanism of Cu6Sn5 layer act as a diffusion barrier layer. in 2013 14th International Conference on Electronic Packaging Technology. 2013.
[77] L.M. Lee and A.A. Mohamad, Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review, Advances in Materials Science and Engineering, 2013 (2013) 123697.
[78] G.Y. Li and B.L. Chen, Formation and growth kinetics of interfacial intermetallics in Pb-free solder joint, IEEE Transactions on Components and Packaging Technologies, 26 (2003) 651-658.
[79] L. Dezhi, L. Changqing, and P.P. Conway. Interfacial reactions between Pb-free solders and metallized substrate surfaces. in 2005 6th International Conference on Electronic Packaging Technology. 2005.
[80] 陳冠達, 無鉛銲料與銅鋅合金之界面反應. 2014, 國立臺灣科技大學材料科學與工程系: 台北市.
[81] J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni, Journal of Electronic Materials, 32 (2003) 1203-1208.
[82] H.R. Kotadia, A. Panneerselvam, O. Mokhtari, M.A. Green, and S.H. Mannan, Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction, Journal of Applied Physics, 111 (2012) 074902.
[83] Y. Qiao, X. Liu, N. Zhao, L.C.M. Wu, C. Liu, and H. Ma, Morphology and orientation evolution of Cu6Sn5 grains on (001)Cu and (011)Cu single crystal substrates under temperature gradient, Journal of Materials Science & Technology, 95 (2021) 29-39.
[84] G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, and J. Luo, A review on the interfacial intermetallic compounds between Sn-Ag-Cu based solders and substrates, Journal of Materials Science: Materials in Electronics, 21 (2010) 421-440.
[85] L.C. Tsao, Suppressing effect of 0.5wt.% nano-TiO2 addition into Sn–3.5Ag–0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging, Journal of Alloys and Compounds, 509 (2011) 8441-8448.
[86] B. Guo, A. Kunwar, N. Zhao, J. Chen, Y. Wang, and H. Ma, Effect of Ag3Sn nanoparticles and temperature on Cu6Sn5 IMC growth in Sn-xAg/Cu solder joints, Materials Research Bulletin, 99 (2018) 239-248.
[87] Y. Liu, F. Sun, Y. Liu, and X. Li, Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC–Bi–Ni/Cu solder joints, Journal of Materials Science: Materials in Electronics, 25 (2014) 2627-2633.
[88] H. Tsukamoto, Z. Dong, H. Huang, T. Nishimura, and K. Nogita, Nanoindentation characterization of intermetallic compounds formed between Sn-Cu (-Ni) ball grid arrays and Cu substrates, Materials Science and Engineering: B, 164 (2009) 44-50.
[89] G.Q. Wei, L.C. Du, Y.P. Jia, and L. Qi, Effect of thermomigration on evolution of interfacial intermetallic compounds in Cu/Sn/Cu and Cu/Sn0.7Cu/Cu solder joints, Journal of Materials Science: Materials in Electronics, 26 (2015) 4313-4317.
[90] F. Somidin, S.D. McDonald, X.Y. Ye, D. Qu, K.W. Sweatman, T. Akaiwa, T. Nishimura, and K. Nogita, Inhibition of cracking in Cu6Sn5 intermetallic compounds at the interface of lead-free solder joint by controlling the reflow cooling conditions, 2019 International Conference on Electronics Packaging (ICEP), (2019) 223-228.
[91] Y. Lai, X. Hu, Y. Li, and X. Jiang, Interfacial microstructure evolution and shear strength of Sn0.7Cu-xNi/Cu solder joints, Journal of Materials Science: Materials in Electronics, 29 (2018) 11314-11324.
[92] S. Tian, J. Zhou, F. Xue, R. Cao, and F. Wang, Microstructure, interfacial reactions and mechanical properties of Co/Sn/Co and Cu/Sn/Cu joints produced by transient liquid phase bonding, Journal of Materials Science: Materials in Electronics, 29 (2018)
[93] S.Y. Chang, L.C. Tsao, M.W. Wu, and C.W. Chen, The morphology and kinetic evolution of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu-0.5Al2O3 composite solder/Cu interface during soldering reaction, Journal of Materials Science: Materials in Electronics, 23 (2012) 100-107.
[94] N. Dariavach, P. Callahan, J. Liang, and R. Fournelle, Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates, Journal of Electronic Materials, 35 (2006) 1581-1592.
[95] W.H. Wu, H.L. Chung, B.Z. Chen, and C.E. Ho, Critical Current Density for Inhibiting (Cu,Ni)6Sn5 Formation on the Ni Side of Cu/Solder/Ni Joints, Journal of Electronic Materials, 39 (2010) 2653-2661.
[96] C.E. Ho, S.P. Yang, P.T. Lee, C.Y. Lee, C.C. Chen, and T.T. Kuo, IMC microstructure modification and mechanical reinforcement of Sn-Ag-Cu/Cu microelectronic joints through an advanced surface finish technique, Journal of Materials Research and Technology, 11 (2021) 1895-1910.

QR CODE