簡易檢索 / 詳目顯示

研究生: 林志洧
Chih-wei Lin
論文名稱: 矽橡膠組成物之導熱填料效應研究
Study of Thermal Conductivity Fillers Effect on Silicone Rubber Composites
指導教授: 邱顯堂
Hsien-tang Chiu
口試委員: 邱維銘
Wei-ming Chiu
蕭耀貴
Yao-kuei Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 離子性高分子改質導熱填料矽橡膠氮化鋁
外文關鍵詞: thermal conductive fillers
相關次數: 點閱:275下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的研究方向主要在探討添加絕緣導熱、導電導熱填料於矽橡膠(Silicone rubber)中複合化及針對離子性高分子改質矽橡膠兩個部份,以探討絕緣導熱、導電導熱填料複合化及離子性高分子改質對導熱性質、電學性質及機械性質的影響效應。
      首先,在絕緣導熱、導電導熱填料複合化研究方面,是先在矽橡膠基材中分別添加不同比例之單一非金屬導熱填料氮化鋁(Aluminum nitride;AlN)及金屬導熱填料鋁粉(Aluminum powder;Al),以了解不同比例之單一導熱填料對矽橡膠基材的導熱性質及電學性質之影響效應。之後,將Silicone rubber/AlN/Al進行混摻複合化,以探討絕緣導熱、導電導熱填料複合化後,對導熱性質、電學性質及機械性質影響效應之趨勢。
      經實驗結果發現,隨著矽橡膠摻合物的導熱填料含量增加,熱傳導係數也隨之上升,在含量50 PHR以上時,鋁粉較氮化鋁粉末之導熱效應有較佳之明顯趨勢。而鋁粉(粒徑:45μm)之熱傳導係數(210 W/m-K)低於氮化鋁粉末(粒徑:4μm ;熱傳導係數:320 W/m-K)卻有此一相反趨勢,推測其原因乃緣自於粒徑效應。且Silicone rubber/AlN/Al以100/100/50之PHR比例混摻的情況下,其熱傳導係數為1.056W/m-K,而導電性為5.16 × 10-12 Scm-1。由SEM觀察下得知Silicone rubber/AlN/Al摻合物具有優良之熱傳導係數,是因為鋁粉和鋁粉之間由小尺寸之氮化鋁粉末填充之關係。另外,導電導熱鋁粉之添加其導電度與熱傳導係數成正比例之關係,而絕緣導熱氮化鋁粉末之添加隨熱傳導係數之增加,其導電度無明顯改變。而且矽橡膠摻合物在熱環境下具有穩定的尺寸安定性及力學性質。
      而在離子性高分子改質矽橡膠的研究方面,以不同比例將矽橡膠與高分子電解質改質劑(Polypropylene oxide-polyethylene oxide copolymer with 20 wt% LiClO4;PEL)進行混摻,以了解添加具有離子傳導特性的高分子電解質改質劑,對矽橡膠的導熱性質、電學性質及機械性質之影響效應。另外,加入導熱填料於離子性高分子改質矽橡膠中,以了解離子性高分子改質矽橡膠添加導熱填料後對導熱性質之影響效應。
      由實驗結果發現,矽橡膠經離子性高分子改質後其導電性與PEL含量成正比,但對熱傳導係數沒影響。由此可知矽橡膠經離子改質後對導熱性質並不具備加乘之效果。另外,添加主要導熱機制為電子傳導之鋁粉與聲子傳導之氮化鋁粉末於具有離子傳導特性的矽橡膠/PEL摻合物中,對熱傳導係數均無明顯的影響效應。也就是說,離子改質對電子或聲子傳導的導熱性質並無加乘效果。


      The two purposes of the research including compounding by adding electric-insulating-thermal-conductive and electric-conductive-thermal-conductive fillers, and performing ionic polymer modification to silicone rubber, to investigate the influence on thermal conductive properties, electric conductive properties, and mechanical properties of compounding by adding electric-insulating-thermal-conductive and electric-conductive-thermal-conductive fillers, and performing ionic polymer modification to silicone rubber.
      In the first place, in the aspect of the research of the compounding by adding electric-insulating-thermal-conductive and electric-conductive-thermal-conductive fillers, a number of composition ratios of unitary nonmetal aluminum nitride filler(AlN) and aluminum powder metal filler(Al) are added to silicon rubber to get the trend of the influence on the thermal conductive properties and electric properties caused by adding various composition ratios of unitary fillers. Afterward, the AlN fillers and Al fillers and silicon rubber are compounded to investigate the trend of the influence on thermal conductive properties, electric properties, and mechanical properties of silicon rubber after compounding with electric-insulating-thermal-conductive and electric-conductive-thermal-conductive fillers.
      The outcome of the experiment shows, as the contained quantity of the thermal conductive filler increases, the thermal conductivity coefficient of the compound would increase. When the contained quantity is more than 50 PHR, the thermal conductivity effect of aluminum powder is evidently tend to be better than that of the aluminum nitride powder. However, the thermal conductivity coefficient(210 W/m-K) of aluminum powder(particle size: 45μm) is lower than that of aluminum nitride powder(particle size: 4μm, thermal conductivity coefficient: 320 W/m-K). This opposite phenomenon may be caused by particle size effect. Besides, In addition, when silicone rubber/AlN/Al was mixed in PHR ratio of 100/100/50, the thermal conductivity coefficient was 1.056W/m-K Scm-1 and the electric conductivity was 5.16 × 10-12. The reason, obtained by SEM observation, the silicone rubber/AlN/Al compound has a good thermal conductivity coefficient due to the phenomenon that there were small aluminum nitride powders filled between the aluminum powders. Besides, the amount of the electric-conductive-thermal-conductive Al powder added is proportional to electric conductivity and thermal conductivity coefficient. The thermal conductivity coefficient would increase and the electric conductivity would remain unchanged as the added amount of the electric-insulating-thermal-conductive AlN powder increases. In addition, silicone rubber compound keeps steady size stability and mechanical properties in heated environment.
      In the aspect of the research of the performing ionic polymer modification to silicone rubber, The silicone rubber and polypropylene oxide-polyethylene oxide copolymer with 20 wt% LiClO4(PEL) were mixed in a number of composition ratios to understand the influence on the thermal conductive properties, electric properties, and mechanical properties of the silicone rubber caused by adding ion conductive PEL thereto. In addition, a thermal conductive filler was added to the ionic polymer modified silicone rubber to understand the influence on the thermal conductive properties after the thermal conductive filler was added to the ionic polymer modified silicone rubber.
      In the outcome of the experiment, it has been found that the electric conductivity is proportional to the content of the PEL but the thermal conductivity coefficient remained unchanged when the silicone rubber was ionic polymer modified. This shows that ionic modifying the silicone rubber would not enhance the thermal conductivity properties. Furthermore, adding aluminum powder of which the main thermal conductivity mechanism is electron conduction and aluminum nitride powder of phonon conduction to ion conductive silicone rubber/PEL compound would not affect the thermal conductivity coefficient. That is, ionic modifying do not enhance the thermal conductivity properties of electron or phonon conduction.

    中文摘要……………………………………………………………………I 英文摘要……………………………………………………………………III 誌謝…………………………………………………………………………VII 目錄…………………………………………………………………………VIII 圖表索引……………………………………………………………………XII 第一章 緒論………………………………………………………………2 1.1 研究背景與動機………………………………………………………3 1.2 文獻回顧與探討………………………………………………………5 1.2.1 矽橡膠………………………………………………………………5 1.2.1.1 矽橡膠的性質……………………………………………………5 1.2.1.2 矽橡膠的交聯機制………………………………………………6 1.2.2 導熱填料……………………………………………………………7 1.2.3 高分子電解質改質劑………………………………………………7 1.2.4 散熱複合材料的研究………………………………………………9 1.3 研究特徵與目的………………………………………………………10 1.4 研究架構………………………………………………………………11 1.4.1 矽橡膠之複合填料組成對導熱性能影響效應之研究……………11 1.4.2 離子性高分子改質矽橡膠之導熱性能研究………………………12 1.5 參考文獻………………………………………………………………13 第二章 矽橡膠之複合填料組成對導熱性能影響效應之研究…………24 中文摘要……………………………………………………………………25 英文摘要……………………………………………………………………27 2.1 前言……………………………………………………………………30 2.2 實驗……………………………………………………………………31 2.2.1 試片製作……………………………………………………………31 2.2.2 測定…………………………………………………………………31 2.2.2.1 熱傳導係數之測定………………………………………………31 2.2.2.2 熱機械性質之測定………………………………………………31 2.2.2.3 導電性之測定……………………………………………………32 2.2.2.4 介電常數之測定…………………………………………………32 2.2.2.5 硬度之測定………………………………………………………32 2.2.2.6 力學性能之測定…………………………………………………32 2.2.2.7 填料分散性觀測…………………………………………………32 2.3 結果與討論……………………………………………………………34 2.3.1 填料組成對導熱性質之影響效應…………………………………34 2.3.2 填料組成對電學性質之影響效應…………………………………35 2.3.3 填料組成對機械性質之影響效應…………………………………36 2.4 結論……………………………………………………………………39 2.5 參考文獻………………………………………………………………40 第三章 離子性高分子改質矽橡膠之導熱性能研究……………………59 中文摘要……………………………………………………………………60 英文摘要……………………………………………………………………62 3.1 前言……………………………………………………………………64 3.2 實驗……………………………………………………………………65 3.2.1 試片製作……………………………………………………………65 3.2.2 測定…………………………………………………………………65 3.2.2.1 熱傳導係數之測定………………………………………………65 3.2.2.2 熱機械性質之測定………………………………………………65 3.2.2.3 導電性之測定……………………………………………………66 3.2.2.4 介電常數之測定…………………………………………………66 3.2.2.5 硬度之測定………………………………………………………66 3.2.2.6 力學性能之測定…………………………………………………66 3.3 結果與討論…………………………………………………………67 3.3.1 Silicone rubber/PEL對導熱性質之影響效應………………………67 3.3.2 Silicone rubber/PEL對電學性質之影響效應………………………67 3.3.3 Silicone rubber/PEL對機械性質之影響效應………………………68 3.3.4 Silicone rubber/PEL/導熱填料摻合物之導熱性質效應……………69 3.4 結論…………………………………………………………………71 3.5 參考文獻……………………………………………………………72 第四章 總結………………………………………………………………86

    第一章
    1.Lynch﹐Wilfred﹒﹐“Handbook of Silicone Rubber Fabrication”﹐Van Nostrand Reinhold﹐(1978)﹒
    2.Lewis﹐F﹒M﹒﹐“The Science and Technology of Silicone Rubber”﹐Rubber Chemistry and Technology﹐Vol﹒
    XXXV﹐5(Dec﹒1962)﹒
    3.Smith﹐“Analysis of Silicones”﹐John Willey & Sons﹐(1974)﹒
    4.Francois de Buyl﹐“Silicone sealants and structural adhesives”﹐International Journal of Adhesion & adhesives﹐21﹐
    (2001)﹐411-422﹒
    5.Noll W﹒Chemistry and technology of silicones﹒New York:Academic Press﹐(1968)﹒
    6.Stark FO﹐Falender JR﹐Wright AP﹒Silicones﹒In:Wilkinson G﹐Stone FGA﹐Abel EW﹐editors﹒Comprehensive
    organometallic chemistry﹐Vol﹒2﹒Oxford:Pergamon Press﹐(1982)﹒
    7.Sathyanarayana MN﹐Yaseen M﹒Role of promoters in improving adhesion of organic coatings to a substrate﹒Prog Org
    Coat (1995);26:275-313﹒
    8.Kittel﹐Charles﹒﹐“Introduction to Solid State Physics”﹐Wiley﹐(1986)﹒
    9.W﹒D﹒Kingery﹐“Introduction to Ceramic”﹐2nd Editon﹐John Wiley and Sons Inc﹒(1976)﹒
    10.D﹒E﹒Fenton﹐J﹒M﹒Parker﹐and P﹒V﹒Wright﹐“Complexes of alkali metal ions with poly(ethylene oxide
    )”﹐Polymer﹐14﹐589﹐(1973)﹒
    11.M﹒B﹒Armand﹐J﹒M﹒Chabagno﹐and M﹒Duclot﹐Second International Meeting on Solid Electrolytes﹐Extended
    Abstract﹐St﹒Andrews﹐Scotland﹐September﹐20-22﹐(1978)﹒
    12.M﹒B﹒Armand﹐J﹒M﹒Chabagno﹐and M﹒Duclot﹐“Poly-ethers as solid electrolytes”﹐in Fast Ion Transport in
    Solids﹐P﹒Vashitsta﹐J﹒N﹒Mundy﹐and G﹒K﹒Shenoy﹐Editors﹐P﹒131-136﹐Elsevier﹐North-Holland﹐
    Amsterdam﹐Netherlands(1979)﹒
    13.A﹒Killis﹐H﹒Cheradame﹐A﹒Gandini﹐J﹒F﹒Lenest﹐Macromolecules﹐17(1984)63﹒
    14.A﹒Killis﹐H﹒Cheradame﹐J﹒P﹒Cohenaddad﹐A﹒Gandini﹐J﹒F﹒Lenest﹐Solid State Ionics﹐14(1984)231﹒
    15.Hsien-Tang Chiu﹐Jyh-Horng Wu﹐“Silicone/Polypropylene oxide-polyethylene oxide copolymer/Clay composites
    (I)- Curing behavior﹐intermolecular interaction and thermomechanical properties”﹐Journal Polymer Research﹐
    Vol﹒11﹐No﹒4﹐(2004)﹐pp﹒247-255﹒
    16.Hsien-Tang Chiu﹐Jyh-Horng Wu﹐“The dynamic properties of rubber vibration isolators and anti-vibration
    performance of nanoclay modified PU/PEL blends system”﹐Polymer Engineering & Science﹐Vol﹒45﹐No﹒4﹐
    (2005)﹐pp﹒539-255﹒
    17.Hsien-Tang Chiu﹐Jyh-Horng Wu﹐“The conductive effect of electronic/ionic complex conductivity modifier for silicone elastomer”﹐J﹒Appl﹒Polym﹒Sci﹒﹐Vol﹒97﹐No﹒3﹐pp﹒711-720﹒
    18.Xin Lu﹐Gu Xu﹐Peter G﹒Hofstra﹐Robert C﹒Bajcar﹐“Moisture-absorption﹐dielectric relaxation﹐and thermal conductivity studies of polymer composites”﹐Journal of Polymer Science:Part B:Polymer Physics﹐36﹐(1998)﹐pp﹒2259-2265﹒
    19.Yunsheng Xu﹐D﹒D﹒L﹒Chung﹐Cathleen Mroz﹐“Thermally conducting aluminum nitride polymer-matrix composites”﹐Composites:Part A:applied science and manufacturing﹐Vol﹒32﹐(2001)﹐pp﹒1749-1757﹒
    20.F﹒Danes﹐B﹒Garnier﹐and T﹒Dupuis﹐“Predicting﹐Measuring﹐and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler”﹐International Journal of Thermophysics﹐Vol﹒24﹐No﹒3﹐(May
    2003)﹐pp﹒771-784﹒
    21.Hsiao Yen Ng﹐Xuehong Lu﹐Soo Khim Lau﹐“Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic composites filled with boron nitride and carbon fiber”﹐Polymer Composites,Vol﹒26, n1, (Feb﹒2005), pp﹒66-73﹒
    22.L﹒C﹒Sim﹐S﹒R﹒Ramanan﹐H﹒Ismail﹐K﹒N﹒Seetharamu﹐T﹒J﹒Goh﹐“Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes”﹐Thermochimica acta﹐Vol﹒430﹐(Jun﹒2005)﹐pp﹒155-165﹒
    第二章
    1.Xin Lu﹐Gu Xu﹐Peter G﹒Hofstra﹐Robert C﹒Bajcar﹐“Moisture-absorption﹐dielectric relaxation﹐and thermal conductivity studies of polymer composites”﹐Journal of Polymer Science:Part B:Polymer Physics﹐36﹐(1998)﹐pp﹒2259-2265﹒
    2.Y﹒Xu﹐D﹒D﹒L﹒Chung and C﹒Mroz﹐“Thermally conducting aluminum nitride polymer-matrix composites”﹐Composites-Part A: Applied Science and Manufacturing﹐Vol﹒32﹐(2001)﹒pp﹒1749-1757﹒
    3.F﹒Danes﹐B﹒Garnier﹐and T﹒Dupuis﹐“Predicting﹐Measuring and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler”﹐International Journal of Thermophysics﹐Vol﹒24﹐No﹒3﹐(May 2003)﹐pp﹒771-784﹒
    4.Hsiao Yen Ng﹐Xuehong Lu﹐Soo Khim Lau﹐“Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic composites filled with boron nitride and carbon fiber”﹐Polymer Composites,Vol﹒26, n1, (Feb﹒2005), pp﹒66-73﹒
    5.L﹒C﹒Sim﹐S﹒R﹒Ramanan﹐H﹒Ismail﹐K﹒N﹒Seetharamu﹐T﹒J﹒Goh﹐“Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes”﹐Thermochimica acta﹐Vol﹒430﹐(Jun﹒2005)﹐pp﹒155-165﹒
    6.Rogers﹐G﹒F﹒C﹒﹐“Heat transfer at the interface of dissimilar metals”﹐Int﹒J﹒Heat Mass Transfer﹐Vol﹒2﹐(1961)﹐pp﹒150-154﹒
    7.Fenech﹐H﹒and Rohsenow﹐W﹒M﹒﹐“Prediction of thermal conductance of metallic surface in contact”﹐Journal of Heat Transfer﹐(1963)pp﹒15-24﹒
    8.P﹒Procter and J﹒Solc﹐“Improved thermal conductivity in microelectronic encapsulations”﹐IEEE﹐(1991)﹐pp﹒835-842﹒
    9.L﹒Lin and D﹒D﹒L﹒Chung﹐“Thermally conducting polymer-matrix composites containing both AlN particles and SiC whiskers”﹐International SAMPE Symposium and Exhibition(Proceedings)﹐Vol﹒38﹐(1993)﹐pp﹒47-52﹒
    10.P﹒Bujard﹐G﹒Kuhnlein﹐S﹒Ino﹐and T﹒Shiobara﹐“Thermal conductivity of molding compounds for plastic packaging”﹐IEEE﹐(1994)﹐pp﹒159-163﹒
    11.Y﹒Nagai and G﹒C﹒Lai﹐“Thermal conductivity of epoxy resin filled with particle aluminum nitride powder”﹐J﹒Ceram﹒Soc﹒Japan﹐Int﹒Edition﹐Vol﹒105﹐(1996)﹐pp﹒213-216﹒
    12.X﹒Lu and G﹒Xu﹐“Thermal conductive polymer composites for electronic packaging”﹐J﹒Appl﹒Polym﹒Sci﹒﹐Vol﹒656﹐(1997)﹐pp﹒2733-2738﹒
    13.W﹒Kim﹐J﹒W﹒Bae﹐I﹒D﹒Choi and Y﹒S﹒Kim﹐“Thermally conductive EMC(Epoxy Molding Compound)for microelectronic encapsulation”﹐Polym﹒Engin﹒and Sci﹒﹐Vol﹒39﹐No﹒4﹐(1999)﹐pp﹒756-766﹒
    第三章
    1.Terutaka Tamai﹐IEEE Transactions on Components﹐Hybrids,and Manufacturing Technology﹐5﹐1﹐(1982)﹐56﹒
    2.Harry Stern﹐Electronic Packaging and Production﹐20﹐7﹐(1980)﹐237﹒
    3.J﹒Kost﹐M﹒Narkis﹐A﹒Foux﹐Polymer Engineering and Science﹐23﹐10﹐(1983)﹐567﹒
    4.J﹒Kost﹐M﹒Narkis﹐A﹒Foux﹐Journal of Applied Polymer Science﹐29﹐(1984)﹐3937﹒
    5.J﹒Kost﹐M﹒Narkis﹐A﹒Foux﹐Polymer Engineering and Science﹐34﹐21﹐(1994)﹐1628﹒
    6.Donald R﹒Poole﹐Plastics Engineering﹐34﹐6﹐(1978)﹐25﹒
    7.Xinsheng Wang﹐Noboru Yoshimura﹐Journal of Applied Physics﹐38﹐(1999)﹐5170﹒
    8.Xin Lu﹐Gu Xu﹐Peter G﹒Hofstra﹐Robert C﹒Bajcar﹐Journal of Polymer Science:Part B:Polymer Physics﹐36﹐(1998)﹐2259﹒
    9.L﹒H﹒Gan﹐Y﹒Y﹒Gan﹐W﹒S﹒Yin﹐Polymer﹐40﹐(1999)﹐4035﹒
    10.Le T﹒T﹒Tuyen﹐K﹒Potje-Kamloth﹐H﹒D﹒Liess﹐Thin Solid Film﹐292﹐(1997)﹐293﹒
    11.Namyong Y﹒Kim﹐Paul E﹒Laibinis﹐Journal of American Chemical Society﹐121﹐(1999)﹐7162﹒
    12.Lee﹐H﹒S﹒﹐Yan﹐X﹒Q﹒﹐Xiang﹐C﹒﹐McBreen﹐J﹒﹐Callahan﹐J﹒H﹒﹐Choi﹐L﹒S﹒﹐J﹒Electrochem﹒Soc﹒﹐146﹐3﹐(1999)﹐941﹒
    13.Killis﹐A﹒﹐Cheradame﹐H﹒﹐Gandini﹐A﹒﹐Lenest﹐J﹒F﹒﹐Cohen﹐J﹒P﹒﹐Solid State Ionics﹐14﹐3﹐(1984)﹐231﹒
    14.Hsien-Tang Chiu﹐Shih-Hsuan Chih﹐Jyh-Horng Wu﹐J﹒Appl﹒Polym﹒Sci﹒﹐89﹐(2003)﹐958﹒
    15.Hsien-Tang Chiu﹐Su-Chen Chen﹐Chug-Pin Ye﹐J﹒Appl﹒Polym﹒Sci﹒﹐86﹐(2002)﹐3740﹒

    無法下載圖示 全文公開日期 2011/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE