簡易檢索 / 詳目顯示

研究生: 葉治全
Chih-chuan Yeh
論文名稱: 釔安定性氧化鋯薄膜濺鍍於多孔性電極及AAO基板及其氧氣幫浦之研究
Characteristics of sputtered YSZ films on porous electrodes and AAO substrates and its application on oxygen pumps
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 陳炤彰
none
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 陽極氧化鋁釔安定氧化鋯白金共濺鍍基板氧氣幫浦磁控濺鍍
外文關鍵詞: AAO, YSZ, platinum, Co-Sputtering, Substrate, Oxygen Pumps, Magnetron Sputtering
相關次數: 點閱:389下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以磁控濺鍍之方式,製作氧化白金(Oxide Platinum)、純白金(Pure Platinum) 以及共濺鍍Pt + YSZ 等三種不同電極於多孔性陽極氧化鋁(anodic aluminum oxide) 矽基板(AAO-Si)(*) 上,並以約500~700nm 深之孔洞作為基底,探討多孔陣列形式對電極與固態氧化物電解質(solid oxide electrolyte) 8YSZ鍍製後,其對於濺鍍孔隙分佈結構及材料性質的影響,並再以電極-電解質-電極組合(Electrode/Electrolyte/ Electrode assembly) 之疊構設計,進行元件電性、表面以及成份分析來探討離子導電之性質。
本實驗欲使用電極多孔之特性以增加其三相點表面積,因此利用SEM 觀察其表面型態後可知,在三種不同電極鍍製10 分鐘後,白金和共濺鍍電極可以得到多孔洞,而氧化白金則需要於退火300oC下持溫30分鐘方可形成孔洞的特性。
另外,在利用不同電極的元件電性分析上,氧化白金及白金電極之元件在交流阻抗圖譜中是以電感形式呈現,此表示電極與電極間形成導通的現象,而共濺鍍電極元件上發現電解質薄膜在足夠厚度下可量測出阻抗值,此證明在AAO-Si 基板乃因粗糙度之關係,進而造成短路之問題。而元件以共濺鍍電極的情況下,分別在下電極部分採用不同形式之電極涵蓋率(電極面積/AAO面積),以探討AAO 基板和YSZ 間應力變化的現象與離子導電效應。電極涵蓋率50% 之元件利用交流阻抗圖譜分析的結果發現,YSZ及AAO基板的接觸並未見離子導電促進效應產生,其原因為多孔性基板結構造成應力消失或晶格失配度過大。相對的,電極涵蓋率100% 的設計使三相點催化表面積增加而使得離子導電性質有所提升。
此外,本論文亦嘗試利用上述元件架構來應用於氧氣幫浦以製作成元件,因此在AAO-Si 基板中之支撐層的Si 基板需製成多孔形式,而穿孔的方式必須利用微機電的方式做腐蝕穿孔或雷射加工穿孔的方式來形成,其因腐蝕不易以及可靠度不高故不堪使用,為解決此元件製程問題,本實驗亦對其進行改良之設計,即利用工業級純鋁板3×3cm,中間製作直徑17mm圓形AAO的通氣基板,其孔深約100μm,此形式結構性強且表面也較為平整,而後再進行濺鍍白金以製備其電極。其結果發現元件在常溫下就具備離子導電的行為,另在進行透氧能力之量測下發現,其確實有氧氣含量上升之現象,但量測值卻比理論計算上來得多。同時,本實驗在進行無電場下測試時,發現同樣有氧氣含量的上升,因此推斷此元件架構有漏氣之現象發生。但在外加電場下氧氣含量的上升明顯優於無外加電場,而AC交流阻抗圖譜中也顯示離子導電效應的增加,故得知元件具備氧氣抽送之效應,可做為氧氣幫浦元件之雛形參考。


This study use the magnetron sputtering method to produce three kinds of electrodes: platinum oxide (PtO), pure platinum (Pt), and co-sputtering electrodes (Pt+8YSZ). These three kinds of electrodes were on the basis of stack-up design about 500~700nm deep holes with 1×1cm porous anodic aluminum oxide silicon substrate (AAO-Si) to investigate the characteristics of porous electrode and the solid oxide electrolyte, internal structure and properties of materials, then use the stack-up design "Electrode - electrolyte – electrode assembly" to make for electrical analysis, surface analysis and composition analysis was conducted to investigate ion conduction properties.
The surface analysis by SEM showed the surface morphology of the three electrodes, sputter in 10 minutes. Pure platinum and co-sputtering electrodes formed more holes, while platinum oxide shall have to form under 300oC to hold temperature for 30 minutes to ensure there are properties of holes.
In addition, electrical analysis of the electrode shows the platinum oxide and platinum in the AC impedance spectra of inductor are rendered which formed between the electrode and the electrode conduction phenomenon. In the co-sputtered of electrodes condition, electrolyte membrane is found due to a sufficient thickness of the impedance can be measured indicating the existence of AAO-Si substrate roughness then cause the short circuit problems.
The total amount of Co-sputtered electrodes is counted to measure the resistance and analyze each part of the down electrode layer with fully and half layer between the AAO and YSZ without touching relationship to explore the electrolyte /AAO substrate has tensile stress and improve the performance of ionic conduction effect. However, it showed a touch YSZ /AAO the resistance is more than without large to conclude that there are two possibilities, one of is a porous between YSZ thin films and AAO tensile stress disappear or mismatch caused too large. On the contrary, the design of full-thickness down electrode surface area of the catalyst triple point increase in the ion conducting properties improved.
This paper tried to use the above element structure to put in use the oxygen pump and made the components together, so the porous substrate needed to be measured, then the AAO-Si substrates in the production of a porous Si substrate to be a way to make use of micro-electromechanical corrosion perforation, or laser perforated processing methods, but both of these ways are required high cost, as a result we cannot use them.
Improved techniques is conducted as an experiment, use industrial grade pure aluminum 3×3cm, diameter 17mm round about the middle of making the AAO ventilation substrate hole depth of approximately 100m, this make structural is strength, and the surface is relatively smooth. Platinum electrodes sputtered parameter was used to pump oxygen at room temperature. It has the ionic conduction phenomena .
Another oxygen pump element can be measured, revealing that oxygen content increased. However, the measured value is much more than theoretical calculations. In the meantime, we tested it without electric field and we found that oxygen content increased. This indicate that the component have the leakage phenomenon. But in the electric field will increase oxygen content significantly better than without electric field, while the AC impedance spectrum of ionic conductivity effects also increases, so that element is oxygen pumping effects, and will be served as prototype reference.

中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1前言 1 第二章 基礎理論與文獻回顧 3 2.1氣體感測器 3 2.1.1 氧氣感測器的種類 3 2.1.1-1電阻式氧氣感測器 3 2.1.1-2 固態電解質之電阻式氧氣感測器 4 2.1.1-3電流式氧氣感測器 5 2.2氧化物電解質 7 2.2-1氧化鋯/以安定氧化鋯之電解質材料 7 2.2-2釔摻雜氧化鋯之導電特性 8 2.3三相點/催化點 18 2.3-1白金電極催化劑的作用 19 2.4陽極氧化鋁原理製程手法 20 2.4-1多孔性陽極氧化鋁膜 20 2.4-2氧化鋁形成孔洞法 21 2.5 交流阻抗分析儀原理 22 第三章 實驗方法及步驟. 29 3.1研究動機與目的 2 3.2實驗藥品規格及儀器設備 29 3.3實驗流程 32 3.4 磁控式濺鍍系統與製程參數 35 3.5分析儀器介紹 38 3.5-1場發掃描式電子顯微鏡與能量散佈分析儀(FESEM/EDS) 38 3.5-2 X光繞射分析儀 39 3.5-3電性量測與分析方法 40 第四章 討論與結果. 43 4.1 各電極之表面型態與總體電性討論 43 4.1-1 電極不同的製程方式 43 4.1-2各電極表面型態及各個不同的製程參數 47 4.2電解質的探討部分 57 4-3電解質和基板介面應力的探討 60 4-4疊構設計-試片製備 63 4-5電性的探討 65 4-6實驗設計改良 73 4-7透氧測試試驗 78 第五章 結論. 84 附錄一 86 第六章 參考文獻 90

1. N. Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ionics, 174, 1-4, p.271-277, (2004).
2. S. C. Singhal, M. Dokiya, et al., Solid Oxide Fuel Cells VIII (SOFC VIII), The Electrochemical. Society, Inc., 88, p.2003-07, (2003).
3. N. Q. Minh, Ceramic Fuel Cells. Journal of the American Ceramic Society, 76, p.563, (1993).
4. N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells., Elsevier, Amsterdam, The Netherlands, (1995).
5. S. C. Singhal, K. Kendall, et. al, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Oxford, UK, (2003).
6. N. Butta, M. Melli, 1990 ,“Influence of surface parameters and doping on the sensitivity and on the response times of tin oxide resistive sensors”, Sens. Actuators B: Chemical, Volume 2, Issue 2, P151-161.
7. T. Takeuchi,1987, “Oxygen Sensors”, Nagakute-cho,Aichi-gun, Aichi-ken 480-l 1.
8. G. Tan, X. Wu, 1998 ,“Electronic conductivity of a ZrO2 thin film 2 as an oxygen sensor ,“Thin Solid Films, Volume 330, Issue 2, P59-61.
9. U. Schonauer,1991,“Response times of resistive thick-film oxygen sensors”, Sens. Acluators B, 4 P431-436.
10. N. Hiura, Y. Endo, T. Yamaura, T. Hoshiya, M. Niimi, J. Saito, S. Sozawa, N. Ooka, M. Kobiyama, 1998 ,“Electrical properties of neutron-irradiated oxygen potential sensors using stabilized zirconia solid electrolyte”, Journal of Nuclear Materials 258-263
11. J. V. Spirig, d, R. Ramamoorthya, Sheikh A, J. L. Routbort, D. Singh, Prabir K.Dutta, 2007 “High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference”, Sens.Actuators B 124.
12. K. Eguchi, Ceramic materials containing rare earth oxides for solid oxide fuel cell, Journal of Alloys and Compounds, 250, p.486-491, (1997).
13. R. L. Ciuccio, N. E. Luiz, A. J. Filho, et al., Comparative analysis properties of ceramics advanced applications in implantology, Innovations Implant Journal, 5, p.15-21, (2010).
14. J. F. Baumard and P. Abelard, in Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, 555, (1984).
15. Y. Suzuki and T. Takahashi, J. Chem. Soc. Jpn, 1610, (1997).
16. N. H. Anderson, K. Claussen, M. A. Hackett, et.al, in Transport-Structure Relations in Fast Ion and Mixed Conductor, Riso National Laboratory, Roskilde, Denmark, p.279, (1985).
17. A. Nakamura and J. B. Wagner, Jr., Defect Structure, Ionic Conductivity, and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electrolytes with Fluorite Structure, J. Electrochem. Soc., 133, p.1542-1548, (1986).
18. Y. Suzuki and T. Takahashi, Denki Kagaku, 39, p.406, (1971).
19. M. A. C. G. Van De Graaf and A. J. Burggraaf, in Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, 744, (1984).
20. J. E. Bauerle, Study of solid electrolyte polarization by a complex admittance method, J. Phys. Chem. Solids, 30, p.2657-2670, (1969).
21. E. J. L. Schouler, Ph. D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France, (1979).
22. T. Takahashi, H. Iwahara, Y. Suzuki and D. Kagaku, J. Phys. Chem. Solids, 39, p.665, (1971).
23. S. P. S. Badwal, S. Rajendran, Effect of micro- and nano-structures on the properties of ionic conductors, Solid State Ionics, 70-71, Part 1, p.83-95, (1994).
24. M. Aoki, Y. M. Chiang, I. Kosacki, et al., Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, Journal of the American Ceramic Society, 79, 5, p.1169-1180, (1996).
25. N. Sata, K. Eberman, K. Eberl and J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures, Nature, 408, p.946-949, (2000).
26. J. Maier, Defect chemistry and ion transport in nanostructured materials: Part II. Aspects of nanoionics, Solid State Ionics, 157, 1-4, p.327-334, (2003).
27. J. Maier, Ionic conduction in space charge regions, Prog. Solid St. Chem., 23, p.171-263, (1995).
28. J. Maier, Nano-sized mixed conductors (Aspects of nano-ionics. Part III), Solid State Ionics, 148, p.367-374, (2002).
29. S. M. Sze, Semiconductor Sensors, John Wiley and Sons, pp. 388-396,1994.
30. I. Kosackia, C. M. Rouleaub, P. F. Bechera, et al., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films, Solid State Ionics, 176, p. 1319–1326, (2005).
31. J. G. Barriocanal, A. R. Calzada, M. Varela, et al., Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures, Science, 321, p.676, (2008).
32. H. L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics, 131, 1-2, p.143-157, (2000).
33. C. Korte , A. Peters , J. Janek , D. Hesse and N. Zakharov, Ionic conductivity and activation energy for oxygen ion transport in superlattices-the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3, Phys. Chem. Chem. Phys., 10, p.4623-4635, (2008).
34. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Haxagonal pore arrays with a50-420 nm interpore distance formed by self-organization in anodic alumina,”J Appl. Phys,84,6023 ,1998.
35. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Haxagonal pore arrays with a50-420 nm interpore distance formed by self-organization in anodic alumina,”J Appl. Phys,84,6023 ,1998.
36. J. R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and System, John Wiley & Sons, Inc., (1987).
37. Alexey, “Solid Oxide Electrolyte Based Oxygen Pump” Advances in Science and Technology Vol.65,p257-262, (2010)
38. N. Q. Minh, C. R. Horne, F. W. Poulsen, et al., High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors. Riso National Laboratory, Roskilde, Denmark, p.337, (1993).
39. T. Ishihara, M. Honda, H. Nishiguchi, et. al, SOFC, The Electrochemical Society, Pennington, NJ, p.301, (1997).
40. Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170, (1-2), p.9-15, (2004).
41. 張家豪,以CeO2-ZrO2 固態氧化物為參考端的薄膜型氧氣感測器,台灣科技大學材料科技研究所碩士論文,(2008)
42. 段葳葳,YSZ奈米薄膜於不同基板下之巨離子導電效應研究,台灣科技大學材料科技研究所碩士論文,(2012)
43. H. Sumia, T. Yamaguchia, K. Hamamotoa, et al., AC impedance characteristics for anode-supported microtubular solid oxide fuel cells, Electrochimica Acta, 67, p.159-165, (2012).
44. Z. Stoynov, D. Vladikova, Differential Impedance Analysis, Prof. Marin Drinov Academic Publishing House, Sofia, (2006).
45. D. Vladikova, Z. Stoynov, G. Raikova in: Z. Stoynov, D. Vladikova (Eds.), Inductance Errors Correction in Impedance Sstudies of Energy Sources, Portable and Emergency Energy Sources from Materials to Systems, Prof. Marin Drinov Academic Publishing House, Sofia, p.383., (2006).
46. N. Q. Minh, C. R. Horne, F. W. Poulsen, et al., High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors. Riso National Laboratory, Roskilde, Denmark, p.337, (1993).
47. T. Ishihara, M. Honda, H. Nishiguchi, et. al, SOFC, The Electrochemical Society, Pennington, NJ, p.301, (1997).
48. Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170, (1-2), p.9-15, (2004).
49. J. L. Hertz, H. L. Tuller, Measurement and finite element modeling of triple phase boundary-related current constriction in YSZ. Solid State Ionics, 178, p.1001–1009, (2007).
50. S. M. Kim, J. W. Son, K. R. Lee, et al., Substrate effect on the electrical properties of sputtered YSZ thin films for co-planar SOFC applications. Journal of Electroceramics, 24, p.153-160, (2010).
51. M. Bass, C. DeCusatis, J. Enoch, et al., Handbook of Optics, Third Edition Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments., (2009).
52. E. Mutoro, B. Luersen, S. Gunther and J. Janek, The electrode model system Pt(O2)|YSZ: Influence of impurities and electrode morphology on cyclic voltammograms, Solid State Ionics, 180, p.1019-1033, (2009).
53. N. Baumann, E. Mutoro , J. Janek, Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates, Solid State Ionics, 181, p.7-15, (2010).
54. E. Mutoro, C. Koutsodontis, B. Luerssen, et al., Electrochemical promotion of Pt(111)/YSZ(111) and Pt-FeOx/YSZ(111) thin catalyst films: Electrocatalytic, catalytic and morphological studies, Applied Catalysis B: Environmental, 100, p.328-337, (2010).
55. S. Heiroth, T. Lippert, A. Wokaun, et al., Yttria-stabilized zirconia thin films by pulsed laser deposition: Microstructural and compositional control, Journal of the European Ceramic Society, 30, p.489-495, (2010).
56. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, (1992).
57. I. Espitia-Cabrera, H. D. Orozco-Hernandez, P. Bartolo-Perez, M. E. Contreras-Garcia, Nanostructure characterization in single and multi layer yttria stabilized zirconia films using XPS, SEM, EDS and AFM, Surface & Coatings Technology, 203, p.211-216, (2008).
58. E. B. Ramı’rez, A. Huanosta, J. P. Sebastian, et al., Structure, composition and electrical properties of YSZ films deposited by ultrasonic spray pyrolysis, J. Mater Sci, 42, p.901-907, (2007).
59. S. J. Wang and C. K. Ong, Epitaxial Y-stabilized ZrO2 films on silicon: Dynamic growth process and interface structure, Appl. Phys. Lett., 80, p.2541, (2002).
60. E. Mutoro, B. Luersen, S. Gunther and J. Janek, The electrode model system Pt(O2)|YSZ: Influence of impurities and electrode morphology on cyclic voltammograms, Solid State Ionics, 180, p.1019-1033, (2009).
61. N. Baumann, E. Mutoro , J. Janek, Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates, Solid State Ionics, 181, p.7-15, (2010).

QR CODE